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Abstract

Consider an algorithm for generating a triangle mesh interpolating a fixed set of 3D point samples, where the generated
triangle set varies depending on some underlying parameters. In this paper we treat such an algorithm as a means of
sampling the space of possible interpolant meshes, and then define a more robust algorithm based on drawing multiple
such samples from this process and averaging them. As mesh connectivity graphs cannot be trivially averaged, we
compute triangle statistics and then attempt to find a set of compatible triangles which maximize agreement between
the sample meshes while also forming a manifold mesh. Essentially, each sample mesh “votes” for triangles, and
hence we call our result a consensus mesh. Finding the optimal consensus mesh is combinatorially intractable, so
we present an efficient greedy algorithm. We apply this strategy to two mesh generation processes - ball pivoting
and localized tangent-space Delaunay triangulations. We then demonstrate that consensus meshing enables a generic
decomposition of the meshing problem which supports trivial parallelization.

1. Introduction

Assume we are given a set of points, possibly with
normals, sampled from some 3D surface, which may
be unknown. We consider the problem of covering this
set of points with a triangle mesh. This mesh can ei-
ther pass through the given points, or only geometrically
approximate them under some metric. In many appli-
cations it is important to preserve the existing points.
For example, we may wish to retile or repair an exist-
ing mesh while at the same time preserving important
per-vertex attributes. The sampling may have impor-
tant global properties - for example a Poisson sampling
- that should not be modified. Or we may be working
with point-cloud data acquired from a 3D scanner, and
desire the maximum geometric fidelity without any ar-
tificial smoothing. These are instances where the mesh
generation algorithm must be interpolatory.

Given the prevalence of this problem, a variety of in-
terpolatory mesh generation algorithms have previously
been developed [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. How-
ever, as opposed to, say, a Delaunay triangulation, many
of these algorithms involve tuning parameters such as
search radii or initial conditions such as seed triangles.
As a result, by varying the parameters and initial condi-
tions we can generate a range of potential meshes.

It is usually the case that, given outputs from a mesh-
ing algorithm over a variety of input parameters, a more
desirable mesh could be created by combining portions

of several outputs. Rather than trying to improve the
meshing algorithm, we explore the approach of attempt-
ing to automatically extract a higher-quality composite
from the set of given meshes.

Motivated by recent work in randomized mesh analy-
sis [11, 12], we hypothesize that the statistics of meshes
themselves can directly inform us about which triangles
are ideal. We treat the result of a mesh generation al-
gorithm as a sample from the space of possible meshes
for a given point set. Given a population of meshes, we
can compute statistics over the union set of candidate
triangles. In particular, the more frequently the output
meshes agree about the presence of a particular triangle,
the more stable that triangle is under the given meshing
strategy. A manifold mesh formed out of the set of tri-
angles which maximizes total stability - the mesh that
the samples agree on the most - is the consensus mesh.

Although the consensus mesh is readily defined, find-
ing it is complicated by the requirement that the set of
triangles be compatible in some sense; for example that
they form a manifold, orientable surface. This is a com-
plex global constraint that is difficult to satisfy if we are
to also maximize other factors such as coverage (i.e. not
leaving gaps). In fact, we show that finding the optimal
consensus mesh in the connected, closed case is NP-
complete (Appendix A).

In the following sections we introduce the consen-
sus mesh concept and define an efficient greedy algo-
rithm for finding an approximate solution which is man-
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ifold and orientable. We then present several experi-
ments using two example meshing strategies. First is
the well-known Ball Pivoting Algorithm (BPA) [1], for
which our consensus meshes automatically compensate
for the fixed-ball-radius limitation of BPA, producing
meshes with much more accurate preservation of fea-
tures at varying scales. We then present a novel lo-
cal mesh generation strategy based on the Discrete Ex-
ponential Map [13]. Our approach essentially com-
putes a local Delaunay triangulation “in the manifold”,
rather than in the planar projections used by other local-
meshing works. The consensus mesh automatically ex-
tracts a compatible global connectivity graph from these
overlapping incompatible local meshes. This local-
to-global capability of consensus meshing, combined
with a simple constraint mechanism, enables trivially-
parallelizable meshing of large datasets. We also show
that our use of simple triangle frequency counts is justi-
fied, as attempts to replace or augment it with geometric
measures only served to reduce the output quality.

As any objective judgement of mesh quality is nec-
essarily application-dependent, we cannot claim that
our consensus meshes are in some way “better” than
those produced by state-of-the-art meshing schemes
(and hence do not perform such comparisons). Con-
sensus meshing also lacks many of the theoretical guar-
antees of recent algorithms. The purpose of consen-
sus meshing is instead a novel capability for interpola-
tory meshing: automatic compensation for parameter-
dependent deficiencies in mesh generation algorithms.
With consensus meshing it is not necessary to manu-
ally explore a parameter range to find the “best” output.
As we demonstrate, a high-quality result can instead
be generated automatically based on a straightforward
sampling of the parameter space. We posit that this is a
highly useful capability in practice, particularly for real-
world point sets which often lack the sampling criteria
needed to ensure robustness in existing algorithms.

1.1. Related Work
The problem of inferring a surface from a set of point

samples is a heavily studied area. Broadly speaking,
there are many general approaches to the problem, in-
cluding computational geometry [14, 15], implicit sur-
faces [16], and moving least squares [17]. We refer the
interested reader to a survey of the area [18], since an in-
depth taxonomy of all approaches is beyond the scope
of this work.

Of particular interest to our contribution are those
methods which retain the input points, as given, to
appear as vertices of the output triangle mesh. Var-
ious such interpolatory algorithms have been pro-

posed. The PowerCrust [2] is a well-known exam-
ple, although as it inserts additional vertices it is not
strictly interpolating. Related algorithms based on 3D
Voronoi/Delaunay structures, such as Tight Cocone [4],
or those based on the Flow Complex [5], are generally
considered parameter-free, although in practice some
threshold parameters are needed to deal with numeri-
cal issues. However, these algorithms are highly de-
pendent on sampling quality (see [19]). Improved al-
gorithms such as Robust Cocone [6] tend to involve
some sampling-dependent radius parameter. The well-
known α-shapes [20] again has a radius parameter that
significantly affects the output mesh, as do algorithms
built on α-shapes [9] and those inspired by it, such as
the Ball Pivoting Algorithm [1]. Region-growing ap-
proaches [21] tend to have similar parameters, as well
as dependencies on initial conditions.

Another class of algorithms focuses on producing a
globally-consistent mesh while using only local infor-
mation. If sampling is locally uniform, various algo-
rithms can be applied to directly generate a mesh [22,
23]. The work of Kil and Amenta incorporates an el-
ement of consensus-finding similar in spirit to our ap-
proach. Mehra et al. [24] apply a novel point cloud vis-
ibility algorithm to generate local reconstructions based
on convex hulls in a dual space, which are then inte-
grated into a global mesh. Algorithms based on lo-
cal information are also easy to parallelize; for exam-
ple a technique based on local Delaunay triangulation
in planar projections [25] has been implemented on the
GPU [26]. Even when such algorithms do not produce
an optimal result, local operators can be used to improve
the mesh quality [27].

We do not propose a new algorithm as an alternative
to any of these, rather our contribution is to view these
algorithms as processes that enable the sampling of the
space of all possible interpolating meshes by varying
their input parameter values. Hence, our contribution is
largely orthogonal to the actual mesh generation algo-
rithm.

The idea of finding a consensus surface from a set of
sampled candidate solutions has been applied to mesh-
ing problems. Binary voxelizations of a mesh can be
combined via majority vote to create a voxelization ro-
bust to spurious topological changes [28]. Alternately
implicit surfaces can be fit to the generated surfaces, and
then functionally combined via robust averaging [29].
Though effective, these approaches are not directly ap-
plicable to interpolatory meshing.

Consensus-finding has been applied to various other
problems in computer graphics. For example, Golovin-
skiy and Funkhouser [11] sample the space of possi-
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ble segmentations and integrate the information by tal-
lying the frequency with which an edge appears in the
sampled segmentation. Zheng et al. [30] sample curve
skeletons from different poses of a given shape and find
the shape’s consensus skeleton, which should remain
topologically invariant. Mitra et al. [31] sample the
space of transformations that map parts of a surface onto
itself and find clusters of such transformations to iden-
tify local symmetries. Anguelov et al. [32] perform
a similar consensus of transformations (which is later
refined) in order to recover an articulated model from
instances presented as independent scans of a model in
different poses.

We note that our problem differs from these latter
cases of consensus finding in that, while their selection
space is continuous, and thus amenable to density-based
clustering approaches, ours is discrete. In the case of
consensus skeletons, the limited size, topological sim-
plicity, and low dimensionality of curve skeletons al-
lows for a correspondence-driven approach. Unfortu-
nately, none of these conditions apply to our problem. In
the case of consensus segmentations, the segmentation
edges are discrete entities that can be tallied over a sin-
gle reference mesh, thus enabling a graph cut approach
to consensus finding. However, in our case, no such ref-
erence graph exists, making a graph-cut approach not
directly applicable. Furthermore, even if such a refer-
ence could be found, a graph cut approach would likely
not scale to the size of datasets we aim to handle.

Scalability of interpolating meshing algorithms is a
challenge. An approach explored in various works is
to apply a spatial decomposition such as an octree,
mesh each cell independently, and then stitch the lo-
cal meshes. An early work in the Cocone family [3]
proposed such an approach, at the cost of theoretical
guarantees. More recently these guarantees have been
restored [10], and a similar strategy based on the me-
dial scaffold has also been presented [8]. We also scale
up via decomposition followed by stitching, however
we do not depend on any geometric consistency to en-
sure that the disjoint meshes automatically “fit”. Instead
we simply apply the same consensus-finding strategy in
the overlap regions. Assuming the underlying algorithm
supports it, we can even use a different generation strat-
egy for the stitching meshes than we did for the per-cell
meshes. Hence, consensus meshing effectively acts as a
“black-box” approach to parallelizing mesh generation.

2. Triangle Statistics

Consider a set of 3D point-samples V =

{p1, p2, . . . , pn}. We assume that no points are coinci-

dent up to floating-point error, i.e. for all i, j, ‖pi −

p j‖ > δ, where δ is some function of machine pre-
cision. A triangle can be defined by a triplet of in-
dices tabc = (a, b, c) or equivalently the triplet of points
tabc = (pa, pb, pc). We then define a mesh as a list of
trianglesM = {t1, t2, . . . , tm}. Note that in the context of
this paper,V is fixed and hence when discussing differ-
entM’s only the list of vertex triplets varies.

Although any set of triangles can be considered a
mesh, for most applications it is necessary that the mesh
be manifold, possibly with boundary. A mesh is mani-
fold if each vertex has a neighbourhood isomorphic to a
disc or half-disc, which implies that:

• each edge has one or two incident triangles

• each vertex has a simply-connected neighbourhood
with either zero or two boundary edges

For most applications we also desire a mesh that is ori-
entable, meaning that a consistent clockwise or counter-
clockwise orientation can be assigned to each triangle.
In terms of triangle indices, orientability implies that
across a shared edge (a, b) the two connected triangles
must have ordered indices (a, b, c) and (b, a, d).

Now consider some process P(Θ) which generates a
mesh based on input parameters Θ. As we vary Θ a se-
ries of meshesM1,M2, . . . ,MN will be output. We as-
sume that there will be some “noise” in this process, in
the form of spurious or undesirable triangles. Conceptu-
ally, we attempt to reduce the presence of these undesir-
able triangles by averaging over allMi. Unfortunately
Mi is a set of vertex index tuples, so the mathemati-
cal notion of the average or mean is not well-defined.
Mi can be interpreted as a connectivity matrix, and we
can average these matrices, but the result would be frac-
tional connectivities which have no clear interpretation.

It would seem that the only basic statistic that we can
extract from a sequence of meshes is the presence or
absence of a given triangle. Let

δ(i, tabc) =

1 if tabc ∈ Mi,

0 otherwise.
(1)

We consider any orientation-preserving permutation of
tabc to be equivalent, so tabc = tcab = tbca. We can now
define the frequency of a triangle tabc as

f (tabc) =

∑N
i=1 δ(i, tabc)

K
(2)

where K is an arbitrary normalizing constant. For ex-
ample, K = N gives us the probability that a trian-
gle appears in a randomly selected mesh. For our pur-
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poses we need only a relative ordering, so K = 1 suf-
fices. In some cases we will also use the unit-range
f̄ (tabc) = f (tabc)/max( f (tabc)).

3. Threshold Meshing

We posit that the more frequently a triangle occurs
in sample meshes, the more stable the triangle is un-
der the meshing process P. We would like to maximize
overall stability, as in some sense, stable triangles most
precisely represent the intent of P.

Given some frequency threshold r, we can define the
threshold mesh Mr = {tabc| f (tabc) > r}. Setting the
threshold to some small r will filter outlier triangles,
however the resulting mesh will, in general, not be man-
ifold (Figure 1a). Increasing r will improve the situ-
ation, but in general setting r high enough that all non-
manifold triangles are filtered out will result in some de-
sirable triangles also being filtered, creating holes (Fig-
ure 1b-c).

Figure 1: Triangles connected to a non-manifold edge (a) are drawn
in red. Increasing the frequency cutoff threshold (to right) results in
(b) holes in the mesh appearing before (c) all non-manifold edges are
filtered out.

Conceptually it would be desirable if as N → ∞,
the threshold meshMr converged to a single manifold
topology for some value of r. This would then clearly
be the consensus mesh under P. However, in our ex-
perience most P have unstable vertex configurations in
which edges can arbitrarily flip, resulting in conflicting
faces with near-equal frequency.

4. Consensus Meshing

Our general problem is that we have a “triangle soup”
over a fixed vertex set and we would like to extract a
manifold, orientable mesh which covers the set of in-
put vertices V. To further constrain this extraction we
would like to also maximize the sum of triangle frequen-
cies. Hence, we want to find:

MC = arg max
M∈Γ

∑
tabc∈M

f (tabc) (3)

where Γ is the space of manifold, orientable triangle
meshes over V. We call MC the consensus mesh, as
it maximizes the sum of “votes” for individual triangles
under the constraint that the triangles agree on the mesh
topology.

FindingMC is challenging because whether or not a
given triangle can be included in MC depends on the
triangles in its local neighbourhood, which in turn de-
pend on their local neighbourhoods, and so on. This
problem structure implies that a global combinatorial
search would be necessary. In Appendix A we prove
that the problem of finding a connected and closedMC

is, in fact, NP-completee. Hence, in this section we will
explore greedy algorithms for finding an approximate
consensus mesh. (Note that we will abuse our own ter-
minology somewhat, and refer to any attempt to find the
solution to Equation 3 as a consensus meshMC).

4.1. Incremental Extraction

A trivial greedy mesh extraction algorithm could be
defined by sorting the potential triangles in order of de-
creasing frequency f into a list L f , and then iterating
through the list and appending any compatible triangles
to M. Going forward we will define “compatible” as
manifold and consistently orientable, which rules out a
variety of triangle configurations. In particular, as non-
manifold boundary vertices are disallowed, this simple
linear pass over L f will result in many triangles being
discarded which would be compatible if added in a dif-
ferent order.

To maximize the number of compatible triangles, we
note that a potential triangle is incompatible withM if:

• any edge is connected to an interior edge ofM

• any vertex is connected to an interior vertex ofM

• any edge is connected to an edge ofM with oppo-
site orientation

These triangles are discarded from L f whenever they are
encountered. Potential triangles with vertices connected
to existing boundary vertices (Figure 2b) are simply
skipped during the current iteration. Each time a com-
patible triangle is found, we remove it from L f and then
restart the search from the beginning of the updated po-
tential set L f .

The result of running this algorithm is a mesh com-
prised of a set of small “islands” (Figure 2a). This oc-
curs because we allow multiple isolated triangles to be
added, but enforce the constraint that all vertices remain
manifold. So, the algorithm is limited to adding isolated
triangles or appending to existing boundary edges. The
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“connector” triangles necessary to bridge gaps would
temporarily create non-manifold vertices (Figure 2b),
which are not allowed.

We can modify this algorithm by only permitting a
single isolated triangle to be added, and requiring all
further triangles to be connected to an existing edge.
From this seed triangle, the mesh will grow outwards to
cover the rest of the surface. Obviously only the compo-
nent connected to the seed triangle will be meshed us-
ing this approach. More problematic is that it can leave
cracks in the mesh, as shown in Figure 3b. These cracks
occur when a compatible triangle on the boundary of the
growing mesh is not in the potential set, because it was
not generated in any sample mesh.

A somewhat more interesting issue with limiting in-
cremental extraction to a single seed triangle is that the
final result is biased by the choice of seed. Generally we
use the triangle with the highest frequency as the seed.
If we add another sample mesh, the slight change in
statistics could result in a different seed triangle, which
in turn could produce an entirely different mesh.

4.2. Pair Extraction

We have seen that sequentially appending compati-
ble triangles may result in cracks forming where nec-
essary triangles are missing from the potential set. In
their greedy region-growing algorithm, Cohen-Steiner
and Da [7] simultaneously add pairs of triangles to cross
such gaps, as shown in Figure 2c. We take a similar ap-
proach, although we have many potential pair triangles
and hence must have some selection criteria.

We augment our greedy algorithm as follows. If the
next-best triangle tk = (a, b, c) would result in a non-
manifold vertex c, we search the potential set for the
next-best compatible triangle t j which is connected to
either edge (a, c) or edge (b, c). Although the poten-
tial set will usually contain some triangle t j that can be

Figure 2: Incrementally growing from the boundary with multiple
seed triangles results in (a) mesh “islands”, as we disallow (b) the
non-manifold vertices that would be created by gap-crossing trian-
gles. A manifold gap-crossing can only be created by adding (c) pairs
of triangles simultaneously. Even with gap-crossing, if multiple seed
triangles are permitted then (d) isolated triangles can occur when the
pair necessary to join the island is not in the potential set.

Figure 3: Dial-pad from scanned phone in Figure 4. Figure (a) shows
an alpha-blended rendering of all potential triangles, with α set to
the normalized frequency count of the triangle. Incremental extrac-
tion from a single seed triangle (b) covers the mesh but leaves cracks
when a necessary triangle is missing from the potential set. Increasing
the minimum f -threshold (c) results in additional cracks, which tend
to start at locations where there is higher uncertainty (circles in a,c).
Adding pair extraction (d) to cross the gaps results in full coverage.

paired with tk, if the score for t j is very low then adding
this triangle will often result in many desirable triangles
becoming incompatible. To avoid this we also find the
next compatible triangle tk+1 after tk. We then check if
( f (tk) + f (t j))/2 > f (tk+1). If so, we add tk and t j, other-
wise we add tk+1.

To reduce the cost of this additional linear search we
only consider potential t j whose score is within some
threshold of f (tk). We use a threshold of 0.9, but note
that (empirically) the output is not very sensitive to this
parameter. Generally it serves only to reduce the search
time - the score comparison is far more likely to be the
deciding factor. Too large a threshold will simply in-
crease computation time, while too small will mean that
some pairs are skipped. However, such a high-scoring
pair is necessarily composed of high-scoring triangles,
which will eventually be added individually unless they
become incompatible.

4.3. Constrained Extraction

One particularly useful capability of our approach is
that it can easily incorporate constraints in the form of
specific triangles which should exist in the consensus
mesh. We simply remove these initial triangles from
L f and append them directly to the output. Note that
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while it is not strictly necessary that constraint triangles
exist in L f , it is unlikely that they will be compatible
with the rest of the mesh if they do not. Constrained
extraction will be useful in Section 5.4 where we will
use constraint triangles to generate connective strips of
mesh to join two existing meshes.

4.4. Efficiency Considerations

The greedy algorithm described above is still com-
putationally expensive. To append a triangle we must
linearly search from the beginning of the current L f . If
we find a triangle which can potentially be paired, we
must then linearly search from that triangle onwards to
find a suitable pair triangle, and then perform a second
search for the next-best non-pair triangle. While these
two searches can be combined, and we can truncate the
search at some score threshold, a significant number of
triangles may need to be tested.

Ideally our searches would always terminate near
the beginning of L f . Discarding incompatible trian-
gles from L f as they are encountered ensures that they
are only tested once. However, in most cases a large
number of triangles will remain in the list which must
be tested and then skipped, as they are not yet incom-
patible, but also cannot be connected to the expanding
mesh. These compatibility tests involve interrogating
the current mesh topology and hence do have some cost.
However, note that for most triangles in L f , the addition
of a single triangle tk will have no effect on the outcome
of the compatibility tests.

We can take advantage of this coherence by storing
a timestamp for each vertex and potential triangle. Our
“time” is an iteration counter, and when we insert a tri-
angle we set the timestamp on each of its vertices to the
current time. Then during the iteration through L f , we
only consider a triangle for insertion if its timestamp is
less than the maximum timestamp of its vertices. If this
is the case, we test the triangle, and if it is not inserted
or discarded, we set the timestamp to this maximum.

Exploiting coherence via timestamping significantly
reduces runtimes for our algorithm by several orders
of magnitude. As an illustrative example, consider the
result in Figure 4, where we have 44,023 points and
487,348 triangles in the potential set. Without times-
tamping, extracting the 85,406 triangles in the consen-
sus mesh takes over 3 hours. With timestamping the
same mesh is extracted in 34 seconds. (We emphasize
that these numbers are provided only to demonstrate the
relative speed-up; no attempt has been made to optimize
the efficiency of the manifold and orientation checks
which dominate the computation.)

5. Experiments

In this section we compute consensus meshes for sev-
eral different types of meshing problem, using two dif-
ferent meshing algorithms - Ball Pivoting [1] and a local
Delaunay triangulation approach based on the Discrete
Exponential Map [13]. We then demonstrate that con-
strained consensus meshing can be used to decompose
the meshing problem in a manner amenable to parallel
implementations.

5.1. Ball Pivoting (BPA)

The Ball Pivoting Algorithm (BPA) [1] is a well-
known technique for reconstructing a triangle mesh
given a set of 3D points. The algorithm is straightfor-
ward: first a seed triangle is selected, then for each edge
of the seed a ball of radius r is pivoted around the edge
until another point is hit. This generates a new trian-
gle, and new edges, which are processed until no active
edges remain.

The fixed ball radius r is the main limitation of the
BPA. If too large, the resulting mesh may differ signif-
icantly from the surface that generated the point set. If
too small, holes will be introduced. Clearly this poses
problems for point sets where the spatial density of
points varies. Furthermore, in general only a subset of
the input points are interpolated.

We take BPA to be our process P and r to be our pa-
rameter set Θ. Using the implementation available in
the software MeshLab [33], we generate a set of meshes
by sampling r at regular intervals. An example on a sur-
face with variable point density is shown in Figure 4.
Note that at no value of r is the entire surface covered.

Applying our extraction algorithm from the previous
section, we see in Figure 4d that the consensus mesh
is of significantly higher quality than any of the input
meshes. First, save for some small holes the entire sur-
face is covered in a way not exhibited in any of the input
surfaces. The consensus mesh interpolates 99.6% of the
44,023 input vertices, versus 95.1% for the best individ-
ual BPA mesh. Incidentally, our BPA consensus mesh
also has higher triangle quality than the original mesh
generated by the photo-reconstruction software, which
presumably uses an algorithm more robust than BPA.

In Figure 5 we explore convergence properties of the
BPA consensus mesh under increasing sample count.
We observe that with uniform parameter-space sam-
pling, doubling the sample rate from 50 to 100 does re-
sult in a higher mesh quality (fewer holes). However,
re-distributing the 100 sample points such that smaller
ball radii are sampled more densely results in a signifi-
cant improvement.
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Figure 4: We used a 3D-model-from-photographs web service to scan a telephone (a,top), then discarded the mesh and generated a consensus
meshing using the Ball Pivoting Algorithm (BPA). Due to variable point sampling density, the BPA meshes (a-c, increasing ball radius) exhibit
both holes and (insets) undesirable topological changes. The consensus mesh (d) extracted from 100 sample BPA meshes still contains some small
holes, but is of higher quality than that achievable with BPA alone.

The BPA paper [1] does propose a method to work
around the fixed-ball-size limitation, namely running
the algorithm with an initial ball size, and then itera-
tively increasing the ball size while appending to the ex-
isting triangulation. The robustness of this approach has
not been evaluated in the literature. In basic experiments
we found that it can be effective, but depends on the first
iteration having a ball size large enough to result in cov-
erage over most of the surface, which in turn means that
small features will be lost. If the ball size begins at the
smallest feature size, many small disconnected compo-
nents will be produced, similar to Figure 4a. Later it-
erations will have difficulty merging these components,
creating many non-manifold regions. Essentially, this
approach cannot recover from any low-quality triangles
chosen in previous iterations. By deferring decisions
until all the information (i.e. meshes) is available, our
consensus approach can avoid many of these errors.

5.2. Tangent-Space Delaunay Triangulation

A desirable property for a meshing algorithm is the
ability to produce a globally-consistent mesh while only
using local information. This problem has been previ-
ously explored [25, 22], and even if the result is not op-
timal, algorithms exist for efficiently improving quality
via local operations [27]. In this section we consider re-
construction from local triangulations in the context of
Consensus Meshing.

The Discrete Exponential Map (DEM) [13] algorithm
projects points in a local neighbourhood around a seed
point p of a point set into the tangent space Tp. The tan-
gent space is effectively a local planar parameterization,
and can be put to many uses. Schmidt and Singh [34]
demonstrated that local constrained Delaunay triangu-

Figure 5: In (a-c) we sample a fixed BPA ball-radius parameter range
at regular intervals, with an increasing number of samples N. As ex-
pected, the result improves, but slowly. In (d) we sample nonuni-
formly, with more samples concentrated at smaller ball radii, and get
a better result with N=100 than uniform sampling with N=400. In (e-
g) we map the consensus score f̄ to a color range from red (0) to blue
(1). We observe that with uniform sampling the smaller triangles tend
to have lower f̄ , while (g) concentrating samples at smaller ball radii
shifts the distribution. Note that while the f̄ scores cannot be com-
pared between the different cases, clearly higher f̄ is preferable. The
distribution of f̄ relative to triangle size in the output could perhaps
be used to drive importance sampling strategies.

lations within these spaces can be used to implement
mesh editing operations. However, we can consider a
local Delaunay triangulation computed in a DEM tan-
gent space as simply a meshing process P which does
not cover the entire surface. Our parameter Θ is then
the seed point p, and by varing it we can generate sam-
ple meshes and accumulate triangle statistics.

Note that the DEM is not a planar projection - it wraps
around the surface with distortion proportional to the
surface curvature [13], and has zero distortion on devel-
opable surfaces. Hence, meshes generated in the DEM
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Figure 6: The vertices of (a,b) an initial mesh are re-tiled by (c,d) a
consensus mesh, significantly improving triangle quality (blue=1 is
highest quality, green is lower quality). The aggregate triangle qual-
ity statistics of (b) the initial mesh are avg=0.78 median=0.82 std-
dev=0.16, while for (d) the consensus mesh avg=0.84 median=0.87
stddev=0.12.

tangent space are much closer to the principle of a De-
launay triangulation “in the manifold” than prior works
based on tangent-plane projection.

In the examples that follow, we vary p by iterating
through the input point set, which ensures that every
point in the input point set is covered by some gener-
ated mesh (a form of stratified sampling). Alternatives
such as randomly generating points and projecting onto
the surface via MLS [17] could also be used. We use
the more recent robust-DEM formulation [35] and the
TRIANGLE software [36] to generate the 2D Delaunay
triangulations. Although the DEM usually involves a
geodesic radius, which could be varied as well, we en-
sure reasonable coverage instead by simply running the
DEM propagation until a fixed number of neighbours
are parameterized. We generally set this value to 200,
which is excessive for near-regular meshes but neces-
sary on meshes with more variable sampling density.

One simple application of consensus meshing using
local Delaunay triangulations is to improve the quality
of an existing tessellation. An example is shown in Fig-
ure 6, where the initial mesh was generated by 3D scan-
ning software. Although no vertex positions are modi-
fied, the consensus mesh has significantly improved tri-
angle quality statistics, clearly inheriting some of the
properties of the underlying local 2D Delaunay triangu-
lations. Note that we measure triangle quality as the de-
viation from identity of the linear transformation matrix
taking the triangle to an equilateral triangle [33].

Figure 7 demonstrates another application, in which
a Poisson resampling is computed for an existing mesh
(again using MeshLab [33]) and then a consensus mesh

computed based on local tangent-space meshes. Such
near-regular reduced resolution meshes are particularly
useful in multiresolution algorithms.

Figure 7: Consensus meshes for Poisson resamplings of (a) an initial
mesh using approximately (b) 26k, (c) 15k, and (d) 5k sample points.
The resamplings are highly regular, and hence so are the resulting
meshes (rounded to two digits, the triangle quality statistics are the
same in each case: avg=0.89 median=0.91 stddev=0.09).

5.3. Comparison with Geometric Measures

In this paper we have proposed to use simple fre-
quency counts as our metric for selecting triangles. If
our goal is high-quality meshes, then this approach ap-
pears to ignore the clearly salient and easily computable
per-triangle quality measures.

We first consider ignoring frequency counts alto-
gether and using aspect ratio to score triangles. As can
be seen in Figure 8, this significantly reduces the mesh
quality. Many more holes are present. In addition, this
strategy may even result in a mesh with poorer average
aspect ratio, because the greedy selection of a single tri-
angle with better aspect ratio can easily rule out a set of
mutually compatible triangles with slightly lower aver-
age aspect ratios. The algorithm is then forced to select
lower-quality triangles to fill in the gaps.
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Figure 8: Extraction with triangles scored by (left) frequency count
and (right) aspect ratio. Discarding frequency information results in
many poor decisions by the greedy algorithm, including geometric
clashes (circled). Despite favoring aspect ratio, in the top example the
average aspect ratio is lower (0.863 vs 0.875 for the left) and devia-
tion is higher (0.133 vs 0.109 for the left). This is clearly visible in
the bottom example, where although coverage is similar, greedily se-
lecting triangles with good aspect ratio also results in more triangles
with poorer aspect ratio.

We also attempted to combine the aspect ratio mea-
sure with the consensus measure. This resulted in
meshes with slightly higher quality statistics (a fraction
of a percent) but introduced more local holes, reduc-
ing overall coverage of the point set. In addition, most
improvements were in the form of isolated edge flips
which could have been performed as a post-process.

This result is easily explained. The triangle frequency
counts are not taken from a random triangle soup, but
rather from meshes with largely consistent local neigh-
bourhoods. Hence, the existence of a triangle in a mesh
also implies the existence of compatible neighbours.
Triangles that occur more frequently are by definition
triangles that are likely to “fit” in a composite mesh.
Furthermore, the underlying mesh generation algorithm
presumably is already selecting high-quality triangles
for the given point set. As a result, triangle frequency
counts implicitly encode both neighbour information
and triangle quality. We conjecture that given sufficient
sampling, no quality measure will significantly improve
on raw frequency counts. Empirically we have yet to
observe any contradictions to this statement.

As some additional evidence of the power of raw fre-
quency counts, we observe that with aspect ratio scor-
ing, many overlapping triangles are produced (see Fig-
ure 8). These could be detected and avoided (though
not robustly) via geometric clash detection. However,

similar cases are rare when using the frequency count
scoring. This makes sense as the underlying algorithms
will prefer compatible local configurations.

5.4. Parallel Reconstruction

We have shown that consensus meshing can be used
to integrate a set of disjoint mesh patches into a com-
posite surface. We can further decompose the problem
by computing consensus meshes for subsets of the input
point set, and then using constrained extraction (Sec-
tion 4.3) to stitch these sub-meshes together. We em-
ploy a basic strategy of splitting the point set into a grid
of axis-aligned boxes, computing meshes for each grid
cell, and then incrementally appending each grid cell
mesh to the output mesh. In addition to improving run-
time by reducing the overall computational complexity,
the consensus mesh for each grid cell can be trivially
computed in parallel. Hence, using this strategy we can
parallelize any point-set meshing algorithm.

To stitch the mesh for a cell ci into the compos-
ite mesh M, we first find the cell faces shared with
neighbouring cells c j that are already appended to the
output mesh. For each of these we compute an over-
lap bounding-box Bi j centered at the shared face, with
width set to 5 − 10% of the cell dimensions. All tri-
angles of M contained in

⋃
Bi j are discarded. Next

we define B′i j by expanding Bi j by a factor of two out-
wards from the cell face. We define a new point set
V′ =

{
v ∈ V|v ∈

⋃
B′i j

}
, and compute the consensus

mesh, adding all triangles from M contained within⋃
B′i j as constraints (see Figure 9).
The result of this process is a thin band of mesh sur-

rounding cell ci comprised of two types of triangles: the
constraint triangles which already exist in M, and the
stitching triangles which do not. We can simply append
these latter triangles toM to fill in the stitching region.

Figure 9: Given (a) disjoint regions of mesh covering the same point
set, we (b) compute a consensus mesh of points in an overlap region,
with constraint triangles included from the two initial meshes. We
then (c) extract a transition mesh simply by discarding the constraint
triangles.

A larger example is shown in Figure 10, where raw
output from a handheld 3D scanner has been denoised
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using Locally-Optimal Projection [37] and then meshed
by slicing into 8 segments along the longest axis of the
model bounding box. This scanning technique results in
highly irregular point distribution, and even after apply-
ing LOP significant noise is still present near the sharper
creases. Direct meshing of the point set does have
the advantage of preserving fine-scale features such as
the faintly visible creases on the rear face of the bone.
These details may be lost by meshing strategies which
only approximate the original point set.

Additional large-dataset examples are shown in Fig-
ure 11, with some statistics on meshing with different
parameter settings in Table 1. Note that although small
gaps and islands of the form seen in Figure 2d exist,
coverage is generally high. For example, the Thai Statue
model has 5M points and we cover all but 59 of them.
Output quality slighly suffers as the grid cell density
increases, although this can be counteracted by larger
transition regions.

We note that the computation times in Table 1 are
comparable to recent decomposition-based interpola-
tory meshing strategies [10]. Our current code is in no
way optimized, and computation times are also limited
by the 8-core, 12GB RAM machine used for testing.
Again for the Thai Statue model, with additional com-
pute power we could mesh all 221 cells in parallel, in the
time of the single largest cell. Similarly, our currently-
sequential reassembly algorithm can be parallelized by
permuting the order in which we append grid cells.

6. Limitations

The main limitation of the approach we present is of
course that it is entirely dependent on the underlying
meshing algorithm. If a necessary triangle is not in the
sample set, it will not be in the output mesh. As with any
other meshing strategy, post-processing can be applied
to repair defects.

Sampling. The consensus mesh is also dependent on
the sampling of the mesh generation parameter space.
Any under- or un-sampled features will be missed. We
have not explored sampling strategies in any particu-
lar depth. For BPA we used regular parameter-space
sampling strategies (linear and nonlinear) and for the
tangent-space Delaunay approach we used opportunis-
tic sampling (samples at vertices). We do empha-
size that we did not need to carefully tune our sam-
pling strategies. Save for Figure 5 we did not vary
the BPA sampling strategy at all (regular sampling be-
tween the range of minimum to maximum point-set-
neighbourhood edge lengths). For the local Delaunay

approach, we simply meshed fixed-size neighbourhoods
around each sample point. We note that neither of these
strategies is random. Conceivably random sampling
may result in faster convergence, this remains a ques-
tion for future work.

Topology. Another limitation is that, at the moment, we
can offer little in the way of theoretical guarantees about
the consensus mesh. For example, given adequate sur-
face sampling the Cocone family of algorithms [4, 3, 10]
are certain to generate a mesh topologically equivalent
to the surface the samples came from, and can even pro-
vide geometric accuracy guarantees. If this property
were to hold for all sample meshes, our region-growing
strategy should not introduce any new topological fea-
tures. However, holes caused by incompatible triangles
could cause existing topological features to remain un-
covered. Even if some input meshes do have topological
errors, it does seem plausible that with sufficient sam-
pling the consensus mesh could avoid selecting such er-
roneous triangles. We do observe this in practice with
the Ball-Pivoting results, however a formal validation
remains future work.

Watertightness. Similarly, many meshing algorithms
focus on watertightness as a desirable property [4].
Again, if the input meshes are watertight, presumably a
watertight consensus mesh can be found, as in the worst
case one could simply take all the triangles from a sin-
gle watertight input mesh. However our current strategy
makes no attempt to enforce watertightness.

Boundaries. Boundaries are another common issue [9].
Clearly if the input meshes have boundaries, they can
be reproduced in the consensus mesh. However we
make no guarantees about the topological consistency
of these boundaries relative to the boundaries of the
sampled surface.

We do note that although we have not explored
mathematical guarantees, consensus meshes based
on both Ball-Pivoting and Tangent-Space Delaunay
meshing both do quite well at handling boundaries
and topological similarity. Most of the point-sets we
tested were collected from 3D scanners, and hence both
contained boundaries and would not meet the sampling
criteria necessary for the theoretical guarantees of
known algorithms [10].

7. Conclusions and Future Work

We have presented consensus meshing, an approach
to finding the conceptual “average” of a set of meshes
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Figure 10: Direct meshing of point cloud data acquired from a handheld scanner and then denoised as a post-process. This bone scan has
656k points, the mesh has 1.3m triangles. Note preservation of fine-scale features. This point set is far from uniformly sampled, the leftmost
color rendering indicates average neighbour distance, with the values clamped to (µ − 2σ, µ + 2σ) and then linearly mapped to color range
(red = µ − 2σ, blue = µ, green = µ + 2σ), and in this case σ/µ = 0.28.

generated by sampling a mesh generation algorithm at
different parameter values. We proved that extracting an
optimal closed and connected consensus mesh is NP-
complete, and then provided a greedy algorithm that
can efficiently extract a manifold, orientable mesh. In
addition to generating high quality meshes, consensus
meshing can be used to transparently parallelize exist-
ing meshing algorithms.

We emphasize that this is not a new meshing al-
gorithm, but rather a strategy for improving the out-
put of existing meshing algorithms. We do not claim
that the consensus meshes built from Ball-Pivoting or
our Tangent-Space Delaunay approach are “better” than
a state-of-the-art interpolatory mesh generation algo-
rithm. Objectively defining mesh quality is too diffi-
cult. The purpose of consensus meshing is rather to
compensate for parameter-dependent deficiencies in the
generation algorithm. In this respect we do claim some
success–rather than have to manually tune parameters,
we have demonstrated that we can simply sample a pa-
rameter range and automatically combine the results.

The consensus mesh can inherit some local proper-
ties of the original algorithm, at the cost of some global
guaratees. More useful is that by combining triangles
from multiple parameter samples we can observe prop-
erties not achievable with the input mesh, such as we
did with the composite Ball-Pivoting results in Sec-
tion 5.1. Consensus meshing also improves practical
robustness issues, such as algorithms failing or crashing
for individual sample meshes. We regularly encoun-
tered both these issues, however in most cases nearby
sample meshes can “fill in the gaps” and hence the fail-
ures have minimal effect on the final result.

We have in some sense presented the simplest pos-
sible approach to consensus meshing - each triangle is
given one unit vote, and we greedily extract triangles

in-order. We showed in Section 5.3 that integrating ge-
ometric measures into the triangle score may be prob-
lematic. We did limit ourselves to approaches that were
fixed during the extraction stage - perhaps better re-
sults could be found if the scores of potential triangles
adapted to those already selected (for example using
Delaunay-like criteria). Similarly, more sophisticated
schemes for extraction are likely to further improve re-
sults. For example, many of the remaining holes are due
to specific triangles conflicting with others which could
have filled the hole. Discarding a region around the
hole and then applying the constrained re-computation
of Section 5.4 could repair these holes.

The timestamping scheme presented in Section 4.4
essentially provides a way to track the active edges on
the expanding boundary of the mesh. Spatial queries
could be incorporated to further restrict the search to
triangles close to this advancing front.

Finally, we have focused on statistics of triangles but
another possibility would be to consider statistics of
edges. We have had some success applying our ap-
proach to statistics of edges, although preserving mani-
fold and orientable output is more difficult. A more in-
triguing possibility, though, is that by focusing on edges
it may be possible to extract consensus quad-meshes,
even if the input meshes are triangles.
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Appendix A. Extracting an optimal connected and
closed consensus mesh is NP-complete

The associated decision problem of finding an opti-
mal connected and closed census mesh is that of, given
a value K, determining if there exists a consensus mesh
with sum triangle weight ≥ K. We will show that

this problem is NP-complete by performing a reduction
from the Traveling Salesman Problem (TSP).

Let a graph G = (V, E) and a distance function
d over E describe a TSP instance where we wish to
determine if there exists a tour of length ≤ K. We
map this into a consensus mesh instance as follows.
For every edge (p, q) ∈ E, let us create six points
p1, p2, p3 and q1, q2, q3. Further, let us create six tri-
angles, (p1, p2, q2), (p2, q1, q2), (p2, p3, q1), (p3, q3, q1),
(p3, p1, q3), and (p1, q2, q3).

p1	
  

p2	
  

p3	
  

q2	
  

q3	
  

q1	
  

Let us associate a weight of −d(p, q) to the first triangle
and 0 to the rest; finally, let this instance’s K be the same
as that given for the TSP instance.

Now, given this instance, suppose we can determine
in polytime if there exists a consensus mesh with sum
weight ≥ K. If a triangle (p1, p2, q2) is chosen to be in
the mesh, then (p2, q1, q2) must also be chosen, since it
is the only other triangle incident on edge (p2, q2) and it
must be selected to guarantee the closed manifold prop-
erty. This in turn, guarantees (p2, p3, q1) is selected, and
so on. In other words, if any of the triangles associated
with (p, q) are chosen, then they must all be chosen.
Furthermore, if the triangles associated with (p, q) are
chosen, then there must exist edges (o, p) and (q, r) all
of whose associated triangles must also be chosen since
edges (p1, p2), (p2, p3), (p3, p1), (q1, q2), (q2, q3), and
(q3, q1) must each also have two incident triangles due
to the closed, manifold property. Thus, all vertices of
the chosen subgraph have degree 2, and since the con-
sensus mesh is one connected component, the subset of
edges chosen from E form a cycle. Since all points must
be included in the optimal consensus mesh, all vertices
are included in the cycle. And finally, the sum triangle
weights of the consensus mesh, which are set using the
negated distance of the associated vertices, is ≥ K iff the
sum distance of the associated cycle is ≤ K. Since for
each edge in E we create a constant number of entities,
this reduction is polynomial in time. Lastly, given a K,
we can check that the sum of chosen triangle weights
is ≥ K in polytime, proving membership in NP. Thus,
extracting an optimal connected and closed consensus
mesh is NP-complete.
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