
EUROGRAPHICS 2010 / M. Chen and O. Deussen
(Guest Editors)

Volume 30 (2011), Number 2

GeoBrush: Interactive Mesh Geometry Cloning

Kenshi Takayama1,2, Ryan Schmidt3, Karan Singh3, Takeo Igarashi1, Tamy Boubekeur4 and Olga Sorkine2

1The University of Tokyo 2New York University 3University of Toronto 4Telecom ParisTech – CNRS LTCI

Abstract

We propose a method for interactive cloning of 3D surface geometry using a paintbrush interface, similar to the
continuous cloning brush popular in image editing. Existing interactive mesh composition tools focus on atomic
copy-and-paste of pre-selected feature areas, and are either limited to copying surface displacements, or require
the solution of variational optimization problems, which is too expensive for an interactive brush interface. In con-
trast, our GeoBrush method supports real-time continuous copying of arbitrary high-resolution surface features
between irregular meshes, including topological handles. We achieve this by first establishing a correspondence
between the source and target geometries using a novel generalized discrete exponential map parameterization.
Next we roughly align the source geometry with the target shape using Green Coordinates with automatically-
constructed cages. Finally, we compute an offset membrane to smoothly blend the pasted patch with C1 continuity
before stitching it into the target. The offset membrane is a solution of a bi-harmonic PDE, which is computed on
the GPU in real time by exploiting the regular parametric domain. We demonstrate the effectiveness of GeoBrush
with various editing scenarios, including detail enrichment and completion of scanned surfaces.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

3D surface meshes with high-resolution geometric details
are frequently used in computer graphics and modeling ap-
plications, such as product prototyping and digital content
creation. They are typically created by scanning real-world
objects or by digital sculpting with sophisticated software
tools such as ZBrush [Pix10] or MudBox [Aut10]. Since 3D
modeling is a time-consuming process, it is highly desirable
to be able to reuse the results of previous efforts and combine
features from existing models when making new ones.

In 2D image editing, one very popular tool for content
reuse is the cloning brush, which allows incremental inter-
active copy of image parts onto a new location on the can-
vas (see e.g. [Ado10]). In addition to composition, it is often
used to fill holes in an image after an object was removed. In
this work, our goal is to design a similar interactive cloning
operation for high-resolution meshes in 3D. Our proposed
GeoBrush tool enables continuous copy-paste of detailed ge-
ometry, allowing combining features from different models,
filling missing geometry parts (e.g. due to scanning artifacts)
and cloning of arbitrary geometric details.

Figure 1: Cloning geometric details using GeoBrush.

Geometry cloning significantly differs from image
cloning and is much more challenging in many respects.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

K. Takayama, R. Schmidt, K. Singh, T. Igarashi, T. Boubekeur & O. Sorkine / GeoBrush

Firstly, while images are essentially height functions over
a regular parametric domain, general 2-manifolds in 3D
are not. Surfaces in 3D do not possess canonical “up”
and ”right” directions, and the correspondence between the
source and target surfaces for cloning purposes is difficult
to define: one needs to establish intrinsic coordinate sys-
tems that match in terms of orientation and scale. A one-
to-one correspondence may even be impossible, e.g., if the
surface patches have different topology. Secondly, in the sur-
face case it is not clear what exactly one wants to clone: the
features need to be “peeled” from the source and glued onto
the target surface, taking into account the difference in the
overall curved shapes of both surfaces and deforming the
features accordingly. Finally, the smoothness of the result is
a concern: while in the image case one may get away with
C0 or even discontinuity at the boundary of the pasted re-
gion, for surfaces one typically needs at least C1 continuity.

Previous works partially address some aspects of the ge-
ometry cloning problem, however none provide a complete
solution which could handle general input and work in real
time. Most existing tools either allow copy-paste of height-
field geometric details expressed as displacements over an
explicitly defined smooth base surface [BMBZ02, Aut10,
Pix10], or transplanting of entire large-scale features such
as arms and legs [SLCO∗04, YZX∗04, SBSCO06, FAT07],
which is realized as a one-time operation rather than a con-
tinuous cloning brush. Note that defining a base surface may
be unintuitive for the user and restricts the type of geome-
try one can copy to embossed “stamps”. Copying displace-
ment vectors independently of each other easily leads to
distortions and self-intersections if the copied features are
large and the target surface is curved; the smoothness at the
pasted boundary may also suffer [BS08]. For this reason the
more recent approaches above employ a variational formu-
lation which requires solving a global optimization problem
(typically a discretized polyharmonic PDE over the cloned
patch). While providing better results, such optimization is
costly and prohibits the use of a paint brush interface in real
time even for moderately-sized meshes, since a new system
of equations over an irregular domain is set up and solved
for each cloned patch.

The contribution of our work is a general tool for cloning
geometry with a paint brush interface that can handle irregu-
lar meshes of high resolution and arbitrary surface details in
real time. In particular, GeoBrush enables copy-paste of fea-
tures that significantly differ from simple normal displace-
ments, including highly-protruding geometry and non-disk
topology. We avoid the explicit separation of the source sur-
face into smooth base and details and rather deform the en-
tire source patch to follow the overall shape of the target
surface, which allows working with a very broad range of
shapes of both source and target surfaces. Our formulation
ensures a smooth C1 connection of the cloned geometry to
the rest of the surface, and we preserve the source patch con-
nectivity while stitching it into the target mesh in real time,

Figure 2: GeoBrush enables to clone various areas (gold)
from a selected canvas region onto a target surface.

as the user moves the brush. Moreover, the entire cloned re-
gion may be interactively transformed and dragged to vari-
ous locations on the target surface.

Our user interface allows the user to interactively mod-
ify the cloning area, including or excluding features on the
surface by painting and erasing while watching continuously
updated cloned geometry on the screen. This interaction sup-
ports creative exploration much more fluently than the tra-
ditional lasso-and-paste approach. Furthermore, our paint-
ing algorithm automatically corrects the brushed region to
“flood” partially painted features, such that the selected area
is always valid for cloning. We demonstrate the effective-
ness of our approach through various artistic cloning scenar-
ios, and also show that our tool can be useful for completing
scanned surfaces.

2. Previous work

Many previous works have considered the problem of
reusing existing geometry to synthesize new models. Some
have been largely automated; for example, the Shuffler sys-
tem [KJS07] enables point-and-click swapping of similar
parts using precomputed compatible segmentations. Closer
to our work, many systems focus on reproducing the “cut-
and-paste” interface metaphor on 3D surfaces.

An arbitrary part can be inserted into a target surface by
first cutting a suitable hole in the target, aligning the part
with the hole, defining a boundary correspondence, and then
finally blending the two surfaces. Kanai et al. [KSMK99]
described techniques for manually authoring each of these
steps, while the Modeling By Example system [FKS∗04]
automated them via “intelligent scissor” cutting, ICP align-
ment and automatic generation of smooth fillet surfaces.
Variational techniques based on Poisson [YZX∗04,HFAT07]
and bi-Laplacian [SLCO∗04,FAT07] systems have also been
proposed to generate smoother transitions and handle dif-
ferences in scale. To increase user control, SnapPaste [SB-
SCO06] automatically “snaps” a part into place as a user
interactively drags it near a suitable target hole. This snap-
ping is driven by a Soft-ICP alignment parameterized by the
cursor speed, after which a smooth blend surface is geomet-
rically derived. Note that in each of these tools, the artist

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

K. Takayama, R. Schmidt, K. Singh, T. Igarashi, T. Boubekeur & O. Sorkine / GeoBrush

Preprocess: source and target canvas selection Real-time interactive cloning

(a) (b) (c)

Figure 3: The workflow in GeoBrush. (a) The user clicks on the origin point for the source canvas (yellow point) and selects the
desired canvas region by painting. After mouse release, the system parameterizes the canvas and displays the coordinate lines
(the user may adjust their orientation). (b) The user clicks on the origin location for the target canvas. The system suggests the
initial parameterization, and the user may adjust the scaling and orientation of the coordinate lines. (c) The user paints on either
the source or target surface canvas, and the geometry is cloned and stitched onto the target in real time. The corresponding
source and target brush locations are displayed as circles.

must define an initial global orientation for the part, and also
a target hole. The meshmixer system [SS10] introduces a
“drag-and-drop” metaphor which automates these two steps
using a parameterization of the part boundary, which is pro-
jected onto the target surface via local parameterization. As
a result, the artist can interactively drag the part across the
target surface with real-time visual feedback.

Surface details that can be encoded as tangent-frame dis-
placements can be copied using compatible local parameter-
izations, which in turn free the user from having to specify
global orientation and a suitable target boundary. Biermann
et al. [BMBZ02] took advantage of subdivision topology to
extract displacement vectors from a source region and re-
sample them at the target. This interface was extended to
arbitrary meshes by Fu et al. [FTZ04]. Similar strategies
have been applied to transfer details represented in differ-
ential form. For example, Sorkine et al. [SLCO∗04] copied
differential vectors between suitably-parameterized source
and target regions, then solved a bi-Laplacian problem on
an irregular mesh domain to reconstruct the new target sur-
face. Zatzarinni et al. [ZTS09] propose to copy relief height
functions, which are normal displacements computed via an
optimization, without the need for an explicit base surface.

Commercial 3D sculpting tools [Pix10, Aut10, Lux10]
also support the extraction of vector-displacements from ex-
isting models. These displacement “stamps” can then be
applied to any other surface. Note, however, that as in all
the tools described thus far, the source geometry is fixed.
Schmidt and Singh [SS10] presented a simple clone-brush-
style application of these techniques to arbitrary meshes, in
which the artist first indicates canvas regions on the source
and target meshes. The source is then smoothed and vector
displacements are extracted; compatible parameterizations
are defined between the smoothed source and target. After
this preprocessing, the artist uses a brushing interface to de-
fine the area and magnitude of detail transfer. Like other
displacement-based techniques, this approach is limited to
source regions with disk topology and assumes that the tan-
gent frames at the smoothed source and target have a rel-

atively similar distribution, otherwise the features may be-
come severely distorted or even self-intersecting. Our Geo-
Brush system is inspired by this technique, but does not
share these significant limitations.

Viewing this body of work as a whole, we see that existing
works are either limited to transfer of local displacements
between disk-like patches using artist-friendly brushing in-
terfaces, or composition of discrete parts using complex
multi-step interactions. We propose an alternative, where the
copied shape is not limited to disk topology or displacement
features, but can still be interactively cloned via an intuitive
brushing interface. An additional advantage of GeoBrush is
maintaining a valid manifold mesh at all times, even dur-
ing real-time paint-brushing, such that the user may stop any
time and no “baking” postprocess is necessary.

3. User interface
We use a successfully established image cloning work-
flow [Ado10] as a guideline for GeoBrush. In image cloning,
the screen coordinates define a natural mapping between the
source and target images. The user only has to indicate a
single stamp point on the source that is then mapped to the
point where the user begins to paint on the target image. The
source can be restamped at any time to change the (trans-
lational) correspondence between the source and target for
subsequent cloning. Advanced options allow the user to set
a relative rotation and scale between source and target, but
these are seldom used in practice. The opposite is true for 3D
surface cloning: Rarely is the view-projected planar param-
eterization for arbitrary 3D surfaces foldover-free and with
low distortion, making a direct view-based correspondence
between source and target surfaces ill-defined. Further un-
like images, it is very common to desire 3D surface details
to be cloned with different scale and orientation.

We thus introduce a step into the surface cloning work-
flow (see Fig. 3), where the user explicitly defines canvases
on both source and target surfaces. The canvases roughly en-
close the region to be cloned and provide a local parametric
correspondence between source and target. Users interac-

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

K. Takayama, R. Schmidt, K. Singh, T. Igarashi, T. Boubekeur & O. Sorkine / GeoBrush

Figure 4: The user is free to drag the target canvas region
across the surface, rotate and scale it; the painted ROI ge-
ometry is preserved.

tively control the relative position, orientation and scale of
the canvases. Having established this parametric correspon-
dence between canvases, the user can freely clone detail by
painting in real-time within either source or target canvas.
As with restamping in image cloning, the canvases can be
redefined at any time.

3.1. Interactive canvas placement
As the role of the canvases is to roughly demarcate the re-
gion of operation of the clone brush, it is quickly specified by
the user on the source surface by painting with a large brush.
The first point the user clicks on defines the stamp point,
i.e. the origin of the source canvas (see Fig. 3a, left). The
canvas boundary should be a single loop, but the topology
of the inner surface itself need not be a disk and can have
a higher genus. The system then parameterizes the source
canvas and displays (u,v) coordinate lines as texture on the
surface (Fig. 3a), with the origin and the u,v axes’ directions
marked (Fig. 3a, right). The v-direction is initially aligned
with the screen-space up-vector, and the user can interac-
tively rotate it if desired.

Next, the user clicks on a single point on the target surface
as the corresponding origin of the target canvas; the system
grows the target canvas and displays its 2D parameterization
as a texture (Fig. 3b). Note that the u- and v-coordinate lines
in the source and target canvases (the red and blue lines in
the texture) correspond to each other, as do the cyan tangent
frame vectors painted at the origin points (they signify corre-
sponding “right” and ”up” directions on the canvases). The
user can freely define a 2D rotation and scale of the target
canvas relative to the source; initially the system aligns the
v-coordinate direction with the screen-space up-vector.

3.2. Real-time painting
The user now applies the clone brush by selecting the de-
sired brush size and painting either on the source or target
canvas. The painting operation defines a region of interest
(ROI) on the source canvas that is continuously copied to
the target. Boolean operations on the ROI are also possi-
ble (using modifier keys), subtracting or adding to the al-
ready painted parts. The system performs the cloning oper-
ation instantly and displays the result in real time (Fig. 3c).

GeoBrush enables automatic ROI extension to include whole
surface features (Fig. 9d) that the user brushed only partially.
Additionally, the user can interactively re-adjust the place-
ment, orientation and scale of the target canvas at any time
by transforming and dragging it on the target surface, while
retaining the painted and cloned ROI (Fig. 4).

4. Algorithm
Our guiding principles for designing GeoBrush are interac-
tive speed and treatment of nontrivial details and topology.
We take advantage of the recent advances in discrete dif-
ferential geometry to be able to generate smooth transitions
between the cloned patches and the target surface; however,
we wish to avoid the computational complexity involved in
solving the related variational problems (i.e., solving a PDE
on an irregular mesh domain, which requires expensive ma-
trix factorizations). Our key idea is to exploit the regular 2D
domain provided by local surface parameterization and solve
the variational problem on the GPU. This approach already
proved to be very effective for image editing [MP08].

4.1. Overview
Figures 5 and 6 show the overview of the preprocessing and
the real-time stages of our algorithm. Let Ms = (Vs,Ts) and
Mt = (Vt ,Tt) denote the source and target triangle meshes,
respectively. To prepare for the cloning brush operation,
we establish correspondence between canvas areas on the
source and the target meshes via common 2D parametric do-
main (Fig. 5a). Given the user-defined source canvas Ps⊂Ms
we compute a mapping Es : Ps → IR2. Similarly, the tar-
get canvas Pt ⊂ Mt is parameterized onto the same 2D do-
main by Et : Pt → IR2, such that Es(Ps) ⊂ Et(Pt), and the
user-specified origin points of Ps and Pt map to the same
point in IR2. The details of the parameterization definition
are described in Section 4.2. Note that this is not a classi-
cal one-to-one parameterization since Ps and Pt may have
different topologies and generally E∗ are many-to-one map-
pings; however, for our purposes it suffices to require that
the boundaries ∂Ps and ∂Pt are both single loops and to pose
mild conditions on the pasted regions (see Section 4.5).

The second stage of the preprocess is the deformation
of Ps to approximately non-rigidly align it with the overall
shape of Pt (Fig. 5b). We do this by applying the Green Co-
ordinates (GC) space deformation G : IR3→ IR3 and obtain
a “draft geometry” G(Ps). The details of the automatic cage
construction necessary to define G are given in Section 4.3.

Once the above preprocessing is done, the user can start
using the cloning brush and painting on the target canvas.
Each time the brush is applied, it implies a new region of in-
terest (ROI) on the source canvas and a corresponding ROI
Q ⊂ IR2 in the parametric domain (Fig. 6a). Note that the
ROI may have multiple boundary loops; the only require-
ment is that these boundary loops have a unique mapping
and do not self-intersect the ROI in the parametric domain
(see Section 4.5).

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

K. Takayama, R. Schmidt, K. Singh, T. Igarashi, T. Boubekeur & O. Sorkine / GeoBrush

Pt

u

v

(a) Source and target canvas parameterization (b) Source canvas shape deformation

u

v

GC defm.Es(Ps)

Ps

Et (Pt)

Figure 5: Overview of the GeoBrush preprocess. (a) Canvas selection and parameterization. (b) Construction of compatible
cages and deformation of the source canvas to roughly align it with the target (via Green Coordinates [LLCO08]).

u

v u

v

u

v

Q

(a) Applying cloning brush (b) Parametric regions (c) Offset membrane (d) Stitched result

x̃ +gin

x̃

ỹ

z̃

Es(Rin)

Et (Rout)
u

v

Figure 6: Real-time cloning. (a) The user paints the ROI inside the source (or target) canvas; it corresponds to the parametric
region Q. (b) Flattened submesh Rin (allowed to contain inner foldovers) and flattened part of the target canvas outside of
the cloned area (Rout). (c) The components of the offset membrane (left) which smoothly deforms gin to match with the target
surface (right). (d) We triangulate the gap between Es(Rin) and Et(Rout) (top) to yield the cloned result (bottom).

With every brush movement, we collect the contiguous
subset mesh Rin of the source canvas to be cloned onto the
target (its vertices are {v ∈ Ps| Es(v) ∈ Q}, Fig. 6b). We
would like to paste the warped shape gin = G(Rin) onto the
target surface, but naturally, there is some mismatch in the
shape and placement of gin w.r.t. Pt (Fig. 6c). We offset gin
so that it smoothly attaches to the target (Fig. 6c-d) by com-
puting a C1 offset membrane, as described in Section 4.4.

Apart from painting with the cloning brush, the user may
also change the location of the target canvas origin, as well
as the orientation and scale parameters, while retaining the
cloned ROI (the ROI will naturally translate, rotate and scale
along the surface together with the canvas, see Fig. 4). Drag-
ging and transforming the target canvas is fast thanks to the
efficient parameterization procedure (Section 4.2) and quick
target GC cage generation (Section 4.3): we can reuse the
most expensive part, which is Green Coordinates computa-
tion for the source (1-5 sec.), and only need to parameterize
the target canvas, construct its cage and apply GC, which is
about 40 times faster than computing the GC themselves.

4.2. Canvas selection and parameterization

Given the 2D painted area of the source canvas in screen
space (Section 3.1), we compute the 3D canvas on the mesh

(Ps) as follows. First, we pick a point on the source mesh
under the starting point of the canvas painting (the origin).
We then iteratively expand the region around the origin on
the surface by flood fill, stopping when we hit the boundary
of the painted canvas on the screen.

The clone brush operation requires a correspondence be-
tween source and target surfaces; however, this is only a
rough correspondence since the shapes may be very different
in terms of details and topology. If we were to represent the
surfaces as a smooth base plus displacements, a one-to-one
correspondence between the base surfaces would be suffi-
cient; however, we wish to avoid this explicit decomposition
and allow cloning more general geometry, e.g. extreme ex-
trusions and handles. Therefore we employ a projection-like
parameterization where many-to-one mappings are possible;
this suffices for our purposes as long as the boundary of the
domain has a one-to-one parameterization.

To compute a parameterization, we generalize the discrete
exponential map (DEM) algorithm [SGW06]. Firstly, we
provide DEM with highly smoothed normals instead of the
original surface normals, such that in a sense, DEM would
act as a projection onto an imaginary smooth surface. For
boundary vertices w ∈ ∂Ps we use the original surface nor-
mals n(w), and we interpolate these normals at the interior

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

K. Takayama, R. Schmidt, K. Singh, T. Igarashi, T. Boubekeur & O. Sorkine / GeoBrush

(a) (b) (c)

Figure 7: (a) Generalized Discrete Exponential Map. (b) To
flatten complex geometric features we first generate a
smooth normal field and then compute the DEM parame-
terization. (c) This effectively projects the complex geometry
onto the imaginary surface described by the normal field, but
the parameterization still respects the larger-scale curvature
of the surface, as is visible in (a).

vertices, i.e. for each interior vertex v ∈ Ps \ ∂Ps the normal
is defined as

n(v) =
ñ(v)
‖ñ(v)‖ ; ñ(v) = ∑

w∈∂Ps

n(w)
(‖w−v‖2 + ε)

. (1)

This interpolation is very easy to compute and sufficiently
smooth for our purpose (Figure 7).

We also modify the local parameterization procedure of
a vertex u adjacent to an already parameterized vertex v.
In the original DEM, local vectors (u− v) are projected
onto the tangent plane defined by n(v), and then re-scaled
to preserve (approximate) geodesic distances, effectively ro-
tating (u− v) about (u− v)× n(v). If we were to project
the vertices onto the hypothetical surface described by our
smoothed normal field, components orthogonal to the nor-
mals would be discarded. Hence, we can approximate this
cancellation simply by skipping the re-scaling step. Simi-
larly, we use a k-nearest neighborhood for DEM propagation
instead of the mesh connectivity, as this more accurately rep-
resents adjacency in the (hypothetical) projected mesh and
further improves the results.

Note that for the target canvas Pt we can typically use the
original DEM parameterization, since usually Pt does not
contain significant geometric features. We stop the growth of
Pt ’s parameterization when the 2D parametric space Et(Pt)
contains the entire image Es(Ps). Note also that Pt and its
parameterization are computed simultaneously, whereas Es
is defined after obtaining Ps from the user’s selection.

4.3. Automatic generation of cage meshes for source
canvas deformation

We compute cages Cs and Ct in order to perform space defor-
mation of Ps and align it with Pt . A cage is a low-resolution
closed mesh whose interior contains the object to be warped
(preferably with some distance from the cage surface, to
avoid problems with the deformation smoothness). Cs and Ct
should have the same connectivity and be in full correspon-
dence; Cs should enclose Ps while Ct should approximate the
overall shape of Pt .

We assume shell-like connectivity for the cages. We thus
first create a 2D mesh C by coarsely triangulating the 2D re-
gion Es(Ps). The connectivity of the cages is formed by du-
plicating C into “top” and ”bottom” sheets (green and blue
cage parts in Fig. 8) and generating a triangle strip connect-
ing the two copies along the boundary (red edges Fig. 8).
Therefore, for every vertex u ∈C there are two correspond-
ing vertices of the cage Cs, denoted by vtop(u) and vbtm(u).

We compute the geometry of the cage such that it approx-
imately encloses the canvas. For every u ∈ C we assign 3D
positions to vtop(u) and vbtm(u) by essentially forming a lo-
cal shell around the corresponding region of the surface Ps.
Let `(t) = p0 + tn(u) be a 3D line, where n(u) is the normal
used for DEM and p0 ∈ Ps is some point such that Es(p0) =
u (there is at least one). Let V(u) be the Voronoi region of
u in the mesh C; we project all 3D points p ∈ E−1

s (V(u))
onto the line ` and assign the extremal projected positions
to vtop(u) and vbtm(u). This simple displacement technique
may lead to self-intersections and badly-shaped cage trian-
gles (Fig. 8d); therefore we apply Laplacian mesh optimiza-
tion [NISA06] with the above initial position assignments as
soft constraints. While theoretically, the optimization is not
guaranteed to eliminate all self-intersections, we have not
encountered any problems in practice.

The positions of Ct ’s vertices are computed by deforming
the Cs mesh using Laplacian editing [SLCO∗04]:

min
wt∈Ct

‖∆wt −δ‖2. (2)

We first compute the mesh Laplacian vectors ∆Cs and then
transform them according to the local frame to obtain δ. Let
vs ∈Cs and wt ∈Ct be corresponding vertices on the source
and target cages, and u ∈ C the corresponding point in the
parametric domain; we attach a local frame to vs by tak-
ing the DEM normal n(u) and the two tangent vectors (the
derivatives w.r.t. the u,v coordinates) obtained from the Es
mapping; similarly we compute the local frame at wt from
Et ; we then use δ = λT ∆Cs(vs) as the Laplacian coordinate,
where λ is the scaling factor of Pt (specified by the user,
see Section 3) and T is the transformation between the local
frames of vs and wt . The minimization in Eq. (2) requires
positional constraints; we constrain the boundary midpoints
(wbtm + wtop)/2 = E−1

t (uw), where uw ∈ C is a boundary
vertex in the parametric domain and wbtm,wtop are its corre-
sponding vertices in Ct .

w/o optimization(a) (b) (c) (d)

Figure 8: (a) Cage generation for a challenging case where
the source canvas is curved. Our method produces a reason-
able shape (b-c), whereas the displacement-only approach
leads to self-intersections (d).

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

K. Takayama, R. Schmidt, K. Singh, T. Igarashi, T. Boubekeur & O. Sorkine / GeoBrush

u

v

Reversed faces

Q

source target
Q

(a) Invalid ROI boundary (b) Reversed faces (c) Runtime ROI correction (d) Feature inclusion

E−1
s (∂Q)

FrPs

Es(Ps)

Es(Fr)
Fr

Figure 9: ROI correction. (a) The painted ROI boundary is invalid (it crosses foldover regions in the parametric domain).
GeoBrush automatically detects and corrects such ROI on the fly. (b) We flag the faces that got reversed in the parametric
domain during the preprocess. (c) During painting, we detect whether the ROI boundary ∂Q crosses the set of reversed ROI faces
Fr and grow Fr until ∂Q becomes valid. (d) The face flagging can be extended such that protruding features are automatically
included in the ROI.

4.4. Computing the offset membrane and stitching

As explained in Section 4.1, each time the user applies the
cloning brush, it defines a new ROI Q⊂ IR2 in the parametric
domain. We collect the ROI source mesh Rin (its vertices are
{v ∈ Ps| Es(v) ∈ Q}), and we also compute the submesh
Rout of the target canvas that maps completely outside of Q
and thus remains unchanged after cloning (its vertices are
{v ∈ Pt | Et(v) /∈ Q}). See Fig. 6 for notation explanation.
Recall that we have a draft geometry gin = G(Rin) from the
GC deformation of the source canvas, but it does not match
the target surface precisely. We wish to deform gin such that
it can be attached to the boundary ∂Rout of the target surface
with tangent continuity. For this, we can solve the following
variational problem, akin to transplanting in [SLCO∗04]:

min
∫

Ω

‖∆x−δin‖2, s.t. x|∂Ω = Rout ,
∂x
∂n

∣∣∣∣
∂Ω

=
∂Rout

∂n
,

where x is the stitched geometry, δin = ∆gin are the Lapla-
cians of the draft geometry and Ω is the domain mesh of
the pasted patch, i.e. gin. This equation means that the lo-
cal geometric details of x should be as close as possible
to those of the draft geometry, and x should coincide with
the target surface along the boundary, both in positions and
derivatives. Minimizing the above amounts to solving a bi-
Laplacian PDE:

∆
2x = ∆δin, s.t. x|∂Ω = Rout ,

∂x
∂n

∣∣∣∣
∂Ω

=
∂Rout

∂n
. (3)

To avoid expensive numerical solution of the PDE on the
irregular Ω domain, we use the membrane trick, i.e. we
compute a smooth offset membrane function x̃ : Q⊂ IR2→
IR3, x̃(u,v) = (x̃, ỹ, z̃) by solving the bi-harmonic equation in
the parametric domain instead:

∆
2x̃ = 0, s.t. (4)

x̃|∂Q = Rout −gin,
∂x̃
∂n

∣∣∣∣
∂Q

=
∂Rout

∂n
− ∂gin

∂n
.

The membrane has the same topology as Q and offsets
all points on gin whose parametric mapping is (u,v) to
gin + x̃(u,v) (see Fig. 6c). Solving the above equation can
be efficiently done on the GPU. The final geometry to be

stitched is then x = x̃ + gin, or in other words, each vertex
v ∈ Rin is mapped to x̃(Es(v)) + G(v). We triangulate the
gap between ∂Rin and ∂Rout in the parameter space to stitch
the mesh connectivity.

Instead of solving the bi-harmonic PDE in Eq. (4), we
could have used a fast approximation based on mean value
coordinates [FHL∗09], but this technique is applicable only
when the parametric region Q is a topological disk, and
does not allow constraining tangents at the boundary. We
thus choose to solve the actual PDE on the GPU, similarly
to [MP08]. Since we work in the parametric domain, we con-
vert the Neumann boundary conditions into constraints on
the parametric derivatives:

∂x̃
∂u

∣∣∣∣
∂Q

=
∂Rout

∂u
− ∂gin

∂u
,

∂x̃
∂v

∣∣∣∣
∂Q

=
∂Rout

∂v
− ∂gin

∂v
. (5)

In order to easily solve the bi-harmonic problem using an it-
erative GPU solver, we factor it into two second-order prob-
lems: we solve a Laplace equation for the derivatives Du =
∂x̃/∂u and Dv = ∂x̃/∂v using the constraints above, and then
we solve for x̃ using the Poisson equation ∆x̃ = div(Du,Dv)
with the positional boundary constraints. We employ simple
iterations as in [MP08] and interleave the iterations of the
derivative and the position equations for better robustness,
recomputing the derivatives from the positions each time.
The GPU implementation is described in the appendix.

Fig. 10 shows the effect of using derivative constraints for
the membrane computation. We artificially set G(·) to con-
stant zero in Fig. 10a-b, such that the membrane essentially
forms a hole-filling surface; the advantage of having tangent
continuity is evident (Fig. 10b). For the actual cloning sce-
nario, we clearly observe that the derivative constraints work
effectively, especially when the target geometry is highly
curved (Fig. 10c-d).

4.5. Automatic ROI correction
The cloning operation becomes undefined when the bound-
ary of the ROI, when mapped to the parametric domain,
crosses a part where Es maps multiple points of Ps onto to
a single point in IR2, because the topology of ∂Rin then dif-
fers from that of ∂Rout (Fig. 9a). Similarly, the ROI bound-

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

K. Takayama, R. Schmidt, K. Singh, T. Igarashi, T. Boubekeur & O. Sorkine / GeoBrush

(a)

(b)

(c) (d)

Figure 10: Test cases with G(·) = 0 to compute hole-filling
surfaces without (a) and with (b) derivative constraints. Re-
sults of cloning the Mannequin’s ear onto the edge of a cube
(90◦ bend) without (c) and with (d) derivative constraints.

ary should not cross any foldovers of the target canvas (al-
though this is rare since usually the target does not contain
significant features and can be parameterized without self-
intersections). Therefore, we check whether Q is in an in-
valid configuration every time the user paints, and automati-
cally correct Q if necessary, as follows. In the preprocess, af-
ter computing the parameterization Es, we assign a reversed
flag to each face of Ps that is reversed in the parameter space
(i.e., the dot product of the face normal and the normal used
for DEM is negative, see Fig. 9b). When the user paints, we
detect a set of reversed faces Fr ⊂ Ps that are crossed by ∂Q
in the parameter space, and grow Fr further by adding other
reversed faces in Ps that are adjacent to Fr. Finally, we add a
region slightly larger than Es(Fr) to Q (Fig. 9c).

The above procedure can be extended to automatically in-
clude sharply protruding features into the painted ROI, to
make the cloning process even easier on the user. We change
the criterion for reversed face flagging: instead of checking
whether the dot product between the face normal and the
DEM normal is negative, we check whether it is below a
small positive threshold (Fig. 9d). We also propagate the re-
versed flag to k-ring neighbors (k = 3 in our code).

5. Results and discussion

We implemented our system in C++ and GLSL and tested it
on various machines, including 2.6 GHz CPU with 3.0 GB
of RAM and an NVIDIA Quadro FX 570M GPU. From our
experience, the preprocessing step (source and target can-
vas parameterization, cage computation and Green Coordi-
nates precomputation) typically takes 1-5 seconds, with the
GC precomputation accounting for most of the time spent.

Figure 11: Scary monsters created by cloning nontrivial
topology and concave features.

Source canvas parameterization Painted ROI and cloned result

Figure 12: Cloning handle-like features.

The cloning brush operations run in real time. Dragging of
the target canvas across the target mesh runs at interactive
speed as well since no GC precomputation is necessary, as
discussed in Section 4.1. Please refer to the accompanying
video for live captures of GeoBrush in action.

Figures 1, 2, 12-16 demonstrate various results achieved
with our system. GeoBrush is quite versatile and enables
cloning intricate geometry in an intuitive manner. The paint-
ing metaphor allows to create complex ROI shapes, includ-
ing non simply-connected domains, as can be seen in Fig. 1
(this example took a user with limited 3D modeling experi-
ence under 5 minutes to create). The automatic feature in-
clusion (or exclusion) makes it easy to control the ROI, re-
lieving the user from highly-accurate painting (see Fig. 15).

GeoBrush easily handles complex non-height-field fea-
tures such as the bent spike in Fig. 14. In contrast, many ex-
isting works such as [SS10,Lux10] attempt to find a smooth
base surface via fairing, which tends to degenerate for such
features (see Fig. 14c). Although additional smoothing will
collapse the spike to the plane, in the clone brush tool of
Schmidt et al. [SS10] the degenerate geometry cannot be re-
constructed on the target surface (Fig. 14d).

We conducted a stress test for GeoBrush in Fig. 13, where
we cloned intricate features onto concave and curved sur-
faces. Previous pasting approaches which are based on dis-
placement copying would lead to self-intersections in the
cloned geometry, but our method avoids artifacts and pre-
serves the features robustly, while bending them to adapt to
the shape of the new base domain. The surface quality of
our results is consistent with that of variational cut-and-paste
methods (e.g. [SLCO∗04]), while enjoying real-time speed
and continuous brush interface.

GeoBrush can be useful for interactive scanned surface
completion and repair. Automatic surface reconstruction
methods typically fill in holes where scanned data is miss-
ing by a smooth surface [KBH06]. Our tool allows to re-
store geometric details in the missing regions by cloning
them from another part of the surface or from another model.
Fig. 16a-d shows a synthetic example where we artificially
created a smooth “hole” in the Armadillo model and com-
pleted it in GeoBrush; Fig. 16e-g demonstrates a real-life
example, where the head model in Fig. 16e was obtained
from stereo acquisition using Poisson surface reconstruc-
tion [KBH06] (due to significant missing data, Poisson re-
construction tends to create some blobs on the top of the

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

K. Takayama, R. Schmidt, K. Singh, T. Igarashi, T. Boubekeur & O. Sorkine / GeoBrush

Figure 13: source; target. A stress test for our cloning method. Highly-protruding complex features are challenging to
clone, especially onto concave or high-curvature regions.

(a) (b)

(c) (d)

Figure 14: (a) Cloning a bent spike. (b) GeoBrush success-
fully handles this protruding feature, while the cloning tool
of Schmidt et al. [SS10] (c-d) fails, because the smoothing
necessary to define a base surface causes degeneracy.

head). We completed this model by cloning parts from dif-
ferent meshes (Fig. 16f-g). Differently from the automatic
context-based surface completion of [SACO04], GeoBrush
allows full and interactive control over the source of the
completed geometry while being very simple to use.

Limitations. In our current setup, the user is somewhat lim-
ited in the canvas and ROI selection due to the topolog-
ical restrictions: the canvas must have a single boundary,
and boundaries of the canvas and ROI must not fold over
in the source and target parameterization. In particular, the
canvas cannot have a cylinder or sphere topology, although
this would be useful in practice. In future work, we would
like to alleviate this restriction; at the least, inner holes (i.e.,
inner boundary loops) in the canvas can be achieved with
minimal effort since the DEM parameterization can handle
such cases. Moreover, while changing the target canvas is
fast, re-stamping or changing the location of the source can-
vas is currently slow due to the need to compute GC. We
would like to look into faster alternatives for canvas warping
to enable interactive re-stamping.

6. Conclusion

We presented a technique for interactive geometry cloning
using a painting interface, extending the popular image
cloning metaphor to surfaces in 3D. We handled the added
complexity of dealing with curved manifolds, involved sur-
face features and non trivial topology by using a gener-
alized notion of DEM parameterization, detail-preserving
space warping with automatic cage construction, and smooth

Figure 15: Our automatic feature (dis)selection (Sec-
tion 4.5) removes individual features with a single click.

membrane computation. Compared with the image cloning
interface, we had to introduce an explicit canvas definition
step which can be seen as extended source stamping, result-
ing in an interface that retains the fluidity of image cloning
but with the additional functionality needed to clone 3D sur-
face detail. Our novel technique of automatically adapting
the clone brush to completely include/exclude surface fea-
tures, as proposed in Section 4.5, would be equally applica-
ble and useful in image cloning.

In addition to the future work mentioned earlier, an im-
portant issue to explore is cloning brush re-application, i.e.
adding detail to the already cloned geometry. Currently our
working assumption is that the initial target canvas geometry
should be completely replaced by the source; however, be-
ing able to perform additive cloning while retaining existing
features would be a useful functionality.

Acknowledgments

We are grateful to Scott Schaefer and Eric Landreneau for
the beautiful models with scale-like features [LS10] and to
Alexander Hornung for valuable comments. This work was
supported in part by an NSF award IIS-0905502, by MI-
TACS and by a gift from Adobe Systems.

References

[Ado10] ADOBE SYSTEMS INC.: Photoshop CS5, July 2010.
http://www.adobe.com/photoshop/.

[Aut10] AUTODESK INC.: Mudbox 2011, July 2010.
http://www.autodesk.com/mudbox.

[BMBZ02] BIERMANN H., MARTIN I., BERNARDINI F., ZORIN

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

K. Takayama, R. Schmidt, K. Singh, T. Igarashi, T. Boubekeur & O. Sorkine / GeoBrush

Figure 16: (a-d) Missing or damaged features of a surface can often be repaired by cloning a similar region. (e) In other cases,
no similar regions are available, so we synthesize the missing details (f) using other models (g).

D.: Cut-and-paste editing of multiresolution surfaces. In Proc.
ACM SIGGRAPH (2002), pp. 312–321.

[BS08] BOTSCH M., SORKINE O.: On linear variational surface
deformation methods. IEEE TVCG 14, 1 (2008), 213–230.

[FAT07] FU H., AU O. K.-C., TAI C.-L.: Effective derivation
of similarity transformations for implicit Laplacian mesh editing.
Computer Graphics Forum 21, 1 (2007), 34–45.

[FHL∗09] FARBMAN Z., HOFFER G., LIPMAN Y., COHEN-OR
D., LISCHINSKI D.: Coordinates for instant image cloning. ACM
Trans. Graph. 28, 3 (2009), 67:1–67:9.

[FKS∗04] FUNKHOUSER T., KAZHDAN M., SHILANE P., MIN
P., KIEFER W., TAL A., RUSINKIEWICZ S., DOBKIN D.: Mod-
eling by example. ACM Trans. Graph. 23, 3 (2004), 652–663.

[FTZ04] FU H., TAI C.-L., ZHANG H.: Topology-free cut-and-
paste editing over meshes. In Proc. Geom. Model. and Proc.
(2004), pp. 173–182.

[HFAT07] HUANG X., FU H., AU O. K.-C., TAI C.-L.: Optimal
boundaries for Poisson mesh merging. In Proc. SPM (2007),
pp. 35–40.

[KBH06] KAZHDAN M., BOLITHO M., HOPPE H.: Poisson sur-
face reconstruction. In Proc. Symposium on Geometry Process-
ing (2006), pp. 61–70.

[KJS07] KRAEVOY V., JULIUS D., SHEFFER A.: Model compo-
sition from interchangeable components. In Proc. Pacific Graph.
(2007), pp. 129–138.

[KSMK99] KANAI T., SUZUKI H., MITANI J., KIMURA F.: In-
teractive mesh fusion based on local 3D metamorphosis. In Proc.
Graphics Interface (1999), pp. 148–156.

[LLCO08] LIPMAN Y., LEVIN D., COHEN-OR D.: Green coor-
dinates. ACM Trans. Graph. 27, 3 (2008).

[LS10] LANDRENEAU E., SCHAEFER S.: Scales and scale-like
structures. Computer Graphics Forum 29, 5 (2010), 1653–1660.

[Lux10] LUXOLOGY INC.: Modo 401, July 2010.
http://www.luxology.com/modo/.

[MP08] MCCANN J., POLLARD N. S.: Real-time gradient-
domain painting. ACM Trans. Graph. 27, 3 (2008).

[NISA06] NEALEN A., IGARASHI T., SORKINE O., ALEXA
M.: Laplacian mesh optimization. In ACM GRAPHITE (2006),
pp. 381–389.

[Pix10] PIXOLOGIC, INC.: ZBrush 3.5R3, July 2010.
http://www.pixologic.com/zbrush/.

[SACO04] SHARF A., ALEXA M., COHEN-OR D.: Context-
based surface completion. ACM Trans. Graph. 23, 3 (2004), 878–
887.

[SBSCO06] SHARF A., BLUMENKRANTS M., SHAMIR A.,
COHEN-OR D.: SnapPaste: an interactive technique for easy
mesh composition. Vis. Comput. 22, 9 (2006), 835–844.

[SGW06] SCHMIDT R., GRIMM C., WYVILL B.: Interactive de-
cal compositing with discrete exponential maps. ACM Trans.
Graph. 25, 3 (2006), 605–613.

[SLCO∗04] SORKINE O., LIPMAN Y., COHEN-OR D., ALEXA
M., RÖSSL C., SEIDEL H.-P.: Laplacian surface editing. In
Proc. Symposium on Geometry Processing (2004), pp. 179–188.

[SS10] SCHMIDT R., SINGH K.: meshmixer: an interface for
rapid mesh composition. In ACM SIGGRAPH Talks (2010).

[YZX∗04] YU Y., ZHOU K., XU D., SHI X., BAO H., GUO B.,
SHUM H.-Y.: Mesh editing with Poisson-based gradient field
manipulation. ACM Trans. Graph. 23, 3 (2004), 644–651.

[ZTS09] ZATZARINNI R., TAL A., SHAMIR A.: Relief analysis
and extraction. ACM Trans. Graph. 28, 5 (2009).

Appendix

Here we give the details of the GPU implementation for the
offset membrane optimization described in Section 4.4. De-
note by f the coordinate value at the cell (i.e., f = x̃ or ỹ or
z̃) and let g = (gu,gv) with gu = ∂ f /∂u and gv = ∂ f /∂v. The
values of f and g at the boundary remain constant since they
are constrained. We first compute new f by diffusing values
from surrounding cells while considering g, then compute
g′ as finite differences between the previous f values, and
finally compute new g by diffusing the gradients from sur-
rounding cells. We use damping for both f and g for stable
convergence. The GPU program runs the following compu-
tation in a multigrid fashion, for each cell in parallel in each
step t of the iterations. It takes f t , gt as input and returns
f t+1, gt+1 as output.

f t+1[i, j] = 1
2 f t [i, j]+ 1

8
(

f t [i−1, j]+gt
u[i−1, j]+ f t [i+1, j]

−gt
u[i, j]+ f t [i, j−1]+gt

v[i, j−1]+ f t [i, j +1]−gt
v[i, j]

)
.

g′[i, j] =
{

gt [i, j] if constrained
(f t [i+1, j]− f t [i, j], f t [i, j +1]− f t [i, j]) else

gt+1[i, j] = 1
2 g′[i, j]+ 1

8
(
g′[i−1, j]+g′[i+1, j]+

g′[i, j−1]+g′[i, j +1]
)
.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

