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Abstract

Drawing on recent machine learning work in dimensionality reduction, novel techniques for approximate confor-
mal parameterization of point-set surfaces are introduced. An improved approximation of local tangent-spaces
leads to a new method for computing Laplacian weights on point set neighbourhoods. These weights allow for
linear minimization of the Dirichlet energy, and a robust one-parameter minimization of the Conformal energy.
The latter technique repairs the well-known distortion of the “two-fixed-point” natural conformal parameteri-
zation [DMAO2], enables free-boundary parameterization with uniform, authalic, and mean-value weights, and
supports hybrid weight matrices to improve parameterization robustess.

1. Introduction

Embedding a three-dimensional surface in the plane has
many applications in computer graphics. Most work in pla-
nar parameterization minimizes energy functions defined
over connected, non-overlapping triangles or vertex one-
ring neighbourhoods. Such methods can only be applied to
polygonal (often triangular) meshes, where the edge topol-
ogy can be embedded as a planar graph.

Point-Set Surfaces [KB04, GP07] are an alternative to
meshes which relax topological requirements. When a sur-
face is represented only by points, a neighbourhood is usu-
ally defined as some combination of the k-nearest points and
a Euclidean e-ball. The resulting neighbourhood topology
generally cannot be embedded as a planar graph. The stan-
dard angle, area, and stretch metrics also do not apply, and
without mesh topology it is unclear how to define the bound-
ary of a point set. Hence, mesh parameterization methods
cannot be directly applied to point-set surfaces.

Many of the applications of parameterization, such as tex-
ture mapping, re-meshing, etc [FH02], are also useful in the
point set domain. However, few applicable parameterization
algorithms are available. We describe a new technique which
directly parameterizes a point-set, producing results qualita-
tively similar to conformal mesh parameterizations without
the need for an expensive intermediate meshing step.

1.1. Conformal Mesh Parameterization

For an overview of the parameterization literature, we refer
the reader to recent surveys [FHOS5, SPR06]. Several works
specifically target conformal or angle-preserving parameter-
ization. Angle-Based Flattening [SLMBOS5] is perhaps the
most direct approach, attempting to directly preserve face
angles. Discretizing the minimal surface area problem re-
sults in the discrete conformal energy [PP93], which leads
to the well-known cotangent weights and can be minimized
using linear techniques [DMAO02, LPRM02, MTADOS8]. We
consider these techniques in detail in Section 2.

Conformality can also be formulated in terms of cir-
cle patterns [KSS06], or as the result of discrete surface
Ricci flow, leading to global conformal parameterizations
of arbitrary-genus meshes [JKGO07]. To reduce distortion
Gaussian curvature can be concentrated at cone singulari-
ties, between which cuts are automatically added [KSS06].
Approaches combining cone singularites and metric scaling
have resulted in efficient linear techniques [BCMBOS], and
a discrete formulation of conformal equivalence results in
seamless low-distortion maps [SSPOS].

The conformal techniques mentioned above involve spe-
cific aspects of mesh geometry. In the meshless domain,
Floater and Reimers [FRO1] computed shape-preserving
weights in tangent-plane Delaunay triangulations, then fixed
a manually-determined boundary and solved for the inte-
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rior point positions. This method has been adapted to spher-
ical parameterization of genus-O point sets [ZG04]. The
PointShop system [ZPKGO2] includes a free-boundary tech-
nique, where the user interactively specifies constraint points
to ensure bijectivity. Schmidt et al. [SGWO06] describe a dis-
crete approximation of the log/exp map on point-sampled
surfaces, resulting in tangent-space normal coordinates. We
improve and extend this technique in Section 3.

1.2. Dimensionality Reduction

Dimensionality reduction involves attempting to reconstruct
a map from an M-d Euclidean space to an M-d manifold
embedded in N-d, given only point samples on the embed-
ded manifold. Planar parameterization is the special case
(M =2,N = 3). Strong assumptions about the map are often
made. For example, IsoMap [TdSLOO] assumes that the map
is globally isometric and attempts to preserve all geodesic
distances between points. Although reasonable parameter-
izations can sometimes result [ZKKO02], IsoMap tends to
“flatten” bumps rather than unfold them (Fig. 1a). A confor-
mal variant [dST02] assumes that the M-d space is uniformly
sampled, conflicting with desirable surface sampling.

Maximum-Variance Unfolding (MVU) [WS04] makes an
even stronger isometric assumption, explicitly preserving
edge lengths using semi-definite programming. This leads
to a result similar to IsoMap, and even origami-like mesh
folding with FastMVU, which extends an initial simplified
solution to reduce computation time [WSZS07].

Some dimensionality reduction techniques are based on
eigenproblems involving graph Laplacians, and so are re-
lated to recent spectral techniques in graphics [ZvKDO09]
and roughly as efficient as sparse linear methods [MTADOS].
In particular, Locally-Linear Embedding (LLE) [RS00] and
Laplacian Eigenmaps (LEM) [BNO3] only assume local
isometry, and hence are more applicable to 3D surface pa-
rameterization. As we show in Section 2, LEM directly min-
imizes the Dirichlet energy [PP93]. LLE has been used be-
fore in the graphics domain [PC05], where accurate geodesic
distances between a sparse set of mesh vertices were used to
create an initial LLE map, which was then extended to a full
parameterization via geodesics-based interpolation.

Hessian LLE [DGO3] is based on the same framework
as LLE and LEM, but replaces the local Laplacian operator
with a Hessian norm. Direct application of HLLE can give
good results for some parameterization problems [LYD*05],
but fails in cases involving more distortion (Fig. 1f,h). An-
other technique, Local Tangent-Space Alignment (LTSA)
has also been applied in graphics domains [CLZWO07], but
appears to generate results very similar to HLLE (Fig. le,g)

1.3. Contributions

Local tangent spaces are often approximated using planar
projection. The Discrete Exponential Map (DEM) [SGWO06]
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Figure 1: Left mesh from Fig. 4 flattened using Isomap (a),
Conformal Isomap (b), MVU (c) and FastMVU (e). In all
cases, assumptions about isometry or isotropy result in un-
desirable parameterizations. LTSA (e,g) and HLLE (f,h) give
good results, but fail in almost exactly the same way on the
more complex surface from Fig. 6.

offers a geometry-aware alternative. We improve this
method, then use the local tangent spaces to compute graph
Laplacian weights “on the manifold”, and estimate the
point-set boundary. We then solve spectral Dirichlet and
conformal parameterization problems by adapting Lapla-
cian Eigenmaps (LEM) [BNO3] and Spectral Conformal Pa-
rameterization (SCP) [MTADOS]. A schematic overview is
shown below. Our approach can also be applied to min-
imize the conformal energy with other types of weights.
We show that on meshes it removes the well-known dis-
tortion in the two-point natural conformal parameteriza-
tion (DNCP) [DMAO02] and can be used to generate free-
boundary maps with uniform, authalic, and mean-value
weights. Hybrid weight matrices can also be used to resolve
foldover problems caused by negative cotangent weights.

Solve -
Laplacian Lifyy =ABfyy |— Dl;/l[chlet
Weights (Sec. 4.1) T

(Sec. 3.2)

Estimate AB Solve
Boundary |— (kLg-A)u =1Bu |—»( Conformal
[BSK06] (Sec. 4.2) Map

A short note about our figures. To aid visual compre-
hension, we will show explanatory results on simple semi-
regular triangle meshes, where the vertex set defines an
adequately-sampled point-set surface. However, unless oth-
erwise noted, all topological information is discarded before
giving the vertex set to the algorithms.

Estimate
Tangent

Spaces
(Sec. 3.1)

2. Background

In this section we review key aspects of conformal pa-
rameterization and dimensionality reduction which will be
needed for the following sections.
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In the continuous case, parameterization involves finding
maps fy and f, which take points p = (px, py, p;) on surface
S to coordinates u = (u,v) in the plane. The Dirichlet energy
describes one type of desirable map

E(f) = [LIVssIP m

If we fix f at the boundary, then this energy can be mini-
mized by finding the harmonic that satisfies Ag f = 0. Here
Ag is the Laplace-Beltrami operator, the Laplace operator
A=3%+ 8}2y “on the manifold”.

In the discrete case, S is generally taken to be an open tri-
angle mesh with V vertices {p;}. For piecewise-linear maps
one only need consider the maps at the vertex positions
f={f;}. In this case, the discrete Dirichlet energy is defined
as a sum over the Dirichlet energy at each triangle [PP93].
Written in terms of edges e;; in the mesh,

1 2
Ep(f) = 7 3 Wijlifi 1] @
€ij

where the V X V matrix Lp = D — W is the graph Laplacian,
a discrete analog to the Laplace-Belatrami operator. The ma-
trix terms W;; are the edge weights, nonzero if j € Nbr(i),
and D;; =Y, i Wij. Common weighting schemes include the
uniform weights W', cotangent weights W [PP93], and
the mean-value weights [Flo03].

As Ep(f) is quadratic, if we fix the boundary we can find
the maps at interior vertices by solving the linear system

Lof=0  filos =f 3)

The solution is a discrete harmonic. Note that Equation 3 is
solved separately for f, and f,. The result is guaranteed to be
foldover-free with positive weights and limited non-convex
boundaries [SJGT06], but in general fixed boundaries will
introduce significant distortion (Fig. 4).

LEM The Laplacian Eigenmaps technique [BNO3] presents
an alternative which directly minimizes Ep without any ex-
plicit point constraints, by solving the generalized eigen-
problem Lpf = ADf. If the eigenvalues are sorted in increas-
ing order Ay < A < ..., then the eigenvectors or eigenfunc-
tions associated with the eigenvalues are orthogonal mini-
mizers of the Rayleigh quotient

| f'Lpf / £'DF | @)

The smallest eigenvalue Ay = 0 corresponds to the degener-
ate solution which collapses u to a point. Hence, the param-
eterization is defined by the next two eigenvalue/eigenvector
pairs, Lpf, = A;Df, and Lpf, = A,Df,.

Locally-Linear Embedding (LLE) [RS00] takes the same
approach but minimizes the energy f'L},Lpf, which approx-
imates the iterated Laplacian A%g f [BNO3]. This form is
symmetric positive-definite even if W is non-symmetric, for
example if the rows are normalized.

DNCP An alternative to directly minimizing the Dirichlet
energy is to consider the conformal energy

Ec(u) =Ep(u) — A(u) (5)

where Ep(u) = Ep(fu) + Ep(fy) and A(u) is the area in the
plane. It can be shown that Ep > A, so ¢ > 0, with equality
only when u is conformal, meaning that it can be flattened
without any distortion in angles [PP93, DMAO02].

In the discrete case, the area of a polygon can be computed
by summing along the boundary edges e;;

A =1 (v —upm) ©)
e;;€0U
This formula couples the u and v dimensions. Writing u
as the 2V x 1 vector [f,,f,], we then have A(u) = %utAu,
where A is the 2V X 2V matrix defined in Mullen et
al. [MTADOS]. The graph Laplacian is rewritten Lp <
[Lp,0;0,Lp] and then the discrete conformal energy is

Ec(u) = Ep(u) — A(u) = %u’(LD —Au=u'Lcu (7)

The A matrix provides Neumann (derivative) conditions on
the boundary, so only two vertices need be specified to fix
the 2D translation, rotation, and scale [DMAO2].

SCP The choice of which vertices to fix can significantly af-
fect the quality of DNCP. Mullen et al. [MTADOS] take the
same approach as LEM, solving the eigenproblem Lou =
Au. Note that in this case only one eigenvector is neces-
sary. Mullen et al. also observe that the denominator of the
minimized Rayleigh quotient (Eq. 4) balances discrete con-
formality against the sum of squared distances, implying
that each vertex is essentially connected to a spring pulling
it towards the origin. This can result in highly distorted
foldover regions. Hence, they propose a modified eigenprob-
lem Leu = ABu, where B;; = 1 if p; is a boundary vertex. In
this case the springs are only attached to boundary vertices;
the interior vertices are otherwise unconstrained.

3. Local Weights on Point Sets

Minimizing the Dirichlet or conformal energy on a point set
requires a suitable graph Laplacian. We first approximate the
tangent-space at each point by improving the Discrete Ex-
ponential Map (DEM) [SGWO06]. The result provides a local
isometry in which we can compute “optimal” local weights.

The DEM approximates the exp /log map at a point s,
mapping the local neighbourhood into the rangent-space
Ts via a propagation of normal coordinates outwards from
s [SGWO06]. Given a piecewise-linear path {s,qy,...,qu,p}
from q to each point p. The tangent-space coordinates Tsp
are then defined recursively as

Tsp = Tsq+ MgsTqp (8)

where Tgyp is found via length-preserving tangent-plane pro-
jection of (p —q), and Mgs is a 3D rotation aligning the
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tangent-normal frame Fy; with F5 [SGWO06]. If an approx-
imate geodesic front propagation is used to compute the
paths, for example via Dijkstra’s algorithm on the neigh-
bourhood graph, then Eq. 8 can be evaluated in-line and run-
time complexity is unaffected.

3.1. Upwind-Average Discrete Exponential Map

One limitation of the DEM is that any error introduced
at q; will be propagated to downwind points whose path
passes through q;, potentially leading to catastrophic failures
(Fig. 3b). Similarly, as the paths are completely independent
the error can vary wildly between two neighbouring points.
Since the DEM sums vectors rather than scalars, 7sp could
be estimated from any nearby upwind point (Fig. 2). The re-
sult will be slighly different in each case, so we re-define Tsp
as a weighted average of several estimates:

Tsp = ZW(qu‘) (T5q; +Mq;sTq;p)) ©

where q; are nearby upwind neighbours to p (Figure 2) and
w is the inverse distance weight w(p,q) = (|p—q||* +&)™!
As shown in Fig. 3, upwind averaging improves DEM ro-
bustness, with a small 5-10% increase in runtime cost.
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Figure 2: Although the Discrete Exponential Map estimates
a uv-parameter Wp from a single upwind sample ug (a), other
nearby points on the uv-front provide equally likely estimates
(b) which can be averaged to enhance DEM robustness (c).

As the DEM uses normal information, smoothing normals
relaxes the parameterization in regions of higher curvature.
The result is essentially the parameterization of a smoother
surface. Replacing each normal with a distance-weighted av-
erage of k-neighbourhood normals results in a significant im-
provement and can be efficiently evaluated in-line with the
DEM. Combined with upwind averaging, normal smoothing
results in much more stable maps (Figure 3).

3.2. Tangent-Space Optimal Weights
To find neighbourhood weights, LLE [RS00] explicitly min-
imizes the reconstruction error
2
Ry =|x—Y wix;| (10

subject to the constraint that Y w; = 1. The solution w =
{w;} can be found by solving the linear system

Cw=1 Cir = (x—x;j)- (x—xz) (11

where C is the Gram (covariance) matrix, and then normaliz-
ing w. C is ill-conditioned when the number of neighbours is
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Figure 3: For certain points (red dot) on a highly irregu-
lar bunny mesh (a), the original DEM fails catastrophically
(b). The upwind-average DEM is more robust (c), and with
the addition of local normal smoothing (d) a low-distortion
parameterization is produced. (e-g) shows the same progres-
sion over a surface with wide variation in curvature, which
is also problematic for the DEM.

greater than the dimension (nearly guaranteed for R? - R?),
and so must be regularized by adding a small multiple € of
the identity matrix:

C « C+ (eTr(C))I (12)

The techniques described in Sec. 2 attempt to preserve the
relationships between each point and its neighbours, as ex-
pressed by the weights. The implicit assumption in minimiz-
ing Rx in 3D is that it will approximate minimal Rx in 2D.
At points with any appreciable curvature, however, x will lie
outside the convex hull of its neighbourhood, so minimiz-
ing Eq. 10 can produce large negative weights. The flattened
neighbourhoods which best match these weights may not be
desirable or even geometrically consistent.

Intuitively, the ideal weights would minimize reconstruc-
tion error in the parameterization. This can be approximated
by explicitly flattening the region around x before computing
weights. Such weights will at minimum describe a geometri-
cally plausible neighbourhood, albeit one which reflects the
properties of the flattening technique. As it preserves some
intrinsic geometric properties of the surface, the tangent-
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space Tx is a suitable candidate. This space is linear, and
geodesic distances from x to its neighbours are preserved, so
from the point-of-view of x the tangent map is an isometry.
Using the approximate tangent-space coordinates generated
via Eq. 9, the weights problem can be rewritten as

argmin \|0—ZWijxj||2 (13)
w

These tangent-space weights W™" significantly improve
LLE (Fig. 4). As the DEM is O(klogk) for a k-
neighbourhood, and solving Eq. 13 is O(kz), the asymptotic
complexity of most algorithms is not affected, although there
is a noticeable computation cost (Fig. 5).
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Figure 4: LLE with 3D (a) and tangent-space (b) weights,
which allow large neighbourhoods to be used, reducing in-
terior distortion in fixed-boundary parameterizations (c,d).

One advantage of computing weights in a flattened neigh-
bourhood is that we are not restricted to using small “locally
linear” portions of the surface. We have found that increas-
ing the overlap between neighbourhoods results in a “stiffer”
deformation. This has a particularly noticeable effect when
fixing boundary vertices to a convex polygon and solving
Eq. 3. As the neighbourhood size increases, the interior pulls
away from the polygon and approaches a free-boundary re-
sult (Fig. 4). For free-boundary methods, larger neighbour-
hoods mainly increase robustness to undersampling.

The other free parameter is the regularization tolerance €.
While Eq. 13 does not explicitly guarantee positive weights,
we observe fewer negative weights at interior points as € in-
creases, although the reconstruction error Ry also grows. Us-
ing too large or too small a value will reduce smoothness in
the map. Empirically we find that € = 10¢73 gives results
similar to W' with low Ry, and hence is nearly planar-
reproducing. We note that there are fewer negative weights
on the interior than W, but more on the boundary. This is
because W™ still minimizes Rx on the boundary, which is
not the case for W (Fig. 5).
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DEM/sec 22.5k 13.6k 7.4k
Weights/sec 4.4k 1.3k 0.4k

Figure 5: Weight value histograms for interior (red) and
boundary (blue) points on an irregular bunny mesh, compar-
ing W and W' with several values of €. Heights in sec-
ond row are scaled reconstruction errors Rx. Table breaks
down computation time for varying neighbourhood sizes into
tangent-space estimation/s and solves of Eq. 13/s.

4. Point-Set Parameterization

As Ep > A, minimizing the Dirichlet energy approximates a
conformal parameterization. We present a linear method for
minimizing Ep using our tangent-space weights W*", We
find that this method, called Spectral Dirichlet Parameter-
ization or SDP, is effective in cases with low to moderate
distortion. To minimize the more robust conformal energy,
we must find a scaling factor to compensate for the fact that
W™ is row-normalized. We refer to this technique as Opri-
mized Conformal Parameterization, or OCP.

4.1. Spectral Dirichlet Parameterization (SDP)

We first consider whether the row-normalized W™" still ap-
proximates a Dirichlet energy. In the parameterization litera-
ture, the Lp and Ep have been presented as discrete analogs
of Ag and Ep. The “correct” weights W' can then be de-
rived from the Dirichlet energy of piecewise-linear functions
on mesh triangles [PP93]. No such discretization currently
exists for point sets. However, it can be shown [BNO3] that
in a locally-linear patch around a point p;,

(=Wl Skissf (14)
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where k; is a proportionality constant. Hence, Lp is an ap-
proximation to Ag on an underlying smooth manifold, so
with our approach it is still the case that Ep ~ &p.

LEM minimizes the Dirichlet energy without the need
for any explicit boundary constraints. However, for cases
where any appreciable distortion is necessary, LEM fails
catastrophically (Fig. 6b). As was found in Mullen et
al. [MTADOS], the issue here is that the Rayleigh quotient
being minimized (Eq. 4) prefers a specific global point dis-
tribution. Hence, as in SCP we solve the generalized eigen-
problem Lpf = ABf, where B is the matrix with 1’s on the di-
agonal at boundary points. This leads to foldover-free LEM
parameterizations (Fig. 6¢), even in highly distorted cases.
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Figure 6: A surface (a) parameterized using LEM with W'"
(b), the effect of adding the B matrix to LEM (c) and LLE (d),
LEM with W (e), and SCP (f).

One challenge with meshless approaches is that with-
out topology, deciding which are “boundary” points is non-
trivial. Intuitively, a point is on the boundary of a mani-
fold when its local neighbourhood only covers a portion of
the tangent-space. Hence, boundary points can be detected
by projecting neighbours into the tangent-space and looking
for large gaps in the spoke angles around the origin. This
is known as the angle criterion [BSK06]. On well-sampled
point-set surfaces, we have found that using the angle crite-
rion in our estimated tangent spaces finds a suitable set of
boundary points (Fig. 7). Even if we decimate the boundary
set by half, the parameterization is only slightly altered.

Finally, we mention that LLE can be substituted for LEM
in the above discussion. We can even formulate a conformal
variant of LLE, using the methods of the next section. How-
ever, despite being positive-definite and hence numerically
more desirable, we found found that LLE parameterizations
are at best similar to LEM, and often have higher distortion
(Fig. 6d), so we will not consider LLE any further.

4.2. Optimized Conformal Parameterization (OCP)

One limitation of the spectral Dirichlet parameterization is
that, as each dimension is independent, they may have dif-

Figure 7: The bump mesh parameterized with W*'-SCP (a),
W' LEM with the mesh boundary vertices (b), estimated
boundary points (c), and 50% of the estimated boundary
points (d).

ferent scales. This can lead to a shearing effect in the param-
eterization (Fig. 8b). The conformal energy couples the two
planar dimensions (Eq. 5). Solving SCP with W*" produces
what appears to be catastrophic failure, but on closer exam-
ination we see that most of the mesh has been reasonably
parameterized (Fig. 8d), and both .4(u) and the area of each
triangle remains positive.

We observe that the conformal energy (Eq. 7) can be in-
terpreted as a sum of quadratic terms, which attempts to bal-
ance the Dirichlet energy and the area. However, our weight
matrix W*" is normalized. If we compute SCP with normal-
ized W, we see a similar effect, suggesting that the result
is dependent on the scale of each row of Lp. The same scal-
ing factor is found in Eq. 14. Unlike for W, we do not
know this scale a priori, and so will have to find it. As the
necessary V-dimensional optimization would be to expen-
sive, we formulate a single-variable approxmiation

Ec = (u'(kLp — A)u)’ (15)

—2
We then minimize the energy Ec by applying a line-
search to k, where at each evaluation we solve the resulting
quadratic problem using SCP once £ is fixed.

As k moves away from the optimal value k°*", one might
expect Dc to simply increase. However, .4(u) does not mea-
sure the point-set area of the parameterization, but rather
the winding area. Consider a circle with circumference c.
If we deform this boundary to create two overlapping circles
with circumference ¢/2, the total area drops by a factor of
4. Hence, as k decreases additional low-energy states can be
found where the turning number of the boundary polygon is
greater than 1. This explains why .A(u) remains positive: the
parameterization has not folded, instead it has “spun”.

This spinning is clearly visible when observing the pa-
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Figure 8: In this example a mesh with several extended protrusions is flattened into a small hole in it’s base (a). LEM fails
to accurately reproduce the relationship between the two parameterization axes (b). Solving SCP using W™ appears to catas-
trophically fail (c), but looking closely we find that most of the parameterization is similar to (b). After finding the optimal
scaling factor kP for W', we achieve a result (d) similar to SCP with W' (e).

rameterization at different points on the energy landscape
generated by varying k (Fig. 9). We see that Dc is highly
nonlinear, but has a regular structure that makes the desired
critical point easy to find. Essentially, the turning number
t(u) of the boundary polygon decreases as k — k°P* from
below, while once k > k%', 7(u) = 1 and Dc increases to
infinity. Hence, we can first search forward from k£ = 1 un-
til we find the 7(u) = 1 portion of the landscape, and then
minimize Eq. 7. Within each #(u) step, we essentially have
a quadratic bowl, which makes optimization very efficient.
Even with a gradient-free method like Matlab’s fininbnd, we
converge in 10-15 iterations. In some cases the minima can
be very closely spaced, and the optimizer may skip back and
find a lower value in one of the previous bowls. To avoid this
we define a modified energy

Ee = (u' (KLp — A)u)? 4 rlt(u)] (16)

where r > min]??c\t (we use r = 10). This shifts the “bowls”
in Fig. 9 upwards at each discrete step of #(u), preventing
the optimizer from finding lower minima with ¢(u) > 1.

x104

Figure 9: IEE landscape while varying k.

Since W*" is non-symmetric, some eigenvalues may have
a complex component. However, note that if we rewrite our
2D coordinates as complex numbers u + iv, the 2V x 2V real
matrix L¢ can be rewritten as a V X V matrix with com-
plex entries, and we find the same solution. Alternately, since
W™ is real, the complex conjugate of any complex eigen-
value is also an eigenvalue, and the corresponding eigenvec-

tors are also complex conjugates. Since both minimize ¢
where u is a 2V x 1 complex vector, the projection onto the
real line also minimizes &¢.

5. Optimized DNCP

It is interesting to consider the effect of our optimization
procedure on mesh parameterization. While we do not im-
prove WLSCP, it is well-known that the conformal distor-
tion of DNCP varies depending on which boundary points
are chosen, and that SCP does not suffer from this prob-
lem [MTADOS]. If we use DNCP to solve for u in Equa-
tion 16, we find that at k°" the parameterization is visually
indistinguishable from the SCP result (Fig. 10).
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Figure 10: The symmetry of a saddle mesh (a) is pre-
served by SCP (b). The constraint points needed for DNCP
introduce variable distortion (c,e,g) but applying our opti-
mization procedure reproduces the SCP result, regardless of
where the constraints are placed (d,f,h).

It is also interesting to consider the use of other weights
in DNCP. For example, consider the uniform weights, W"™.
At interior vertices the uniform weights are simply scaled
cotangent weights on regular polygons. Hence, W"™ de-
scribes a hypothetical mesh in which each one-ring is a reg-
ular polygon. Plugging W"™ into our optimized DNCP, we
find a free-boundary parameterization (Fig. 11).

For both W' and W, k%P is very close to 1. If we
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normalize each row, we find quite different results in both
cases. Essentially, normalizing the rows corresponds to giv-
ing each vertex equal weight, while in the canonical forms
W™ and W generally place a lower weight on boundary
vertices. So in some sense, these matrices implicitly contain
“local stiffening” factors [BZK09]. We can also solve op-
timized DNCP and SCP using the area-preserving authalic
weights [DMAO2], and the mean-value weights [Flo03], al-
though the results are not particularly desirable (Fig. 11).
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Figure 11: Optimized DNCP with uniform one-ring weights
results in highly regular planar triangulations (a,b). Nor-
malizing the uniform (c) and cotangent (d) weights implicitly
increases the relative weight of the boundary vertices. A sim-
ilar effect is seen with authalic (e) and mean-value weights
(f). Saddle mesh is used in (a,c-f), and Fig.6a in (b).

One consequence our approach is that, as we have much
more flexibility in terms of specifying a weight matrix, it
is no longer necessary to use the same weight technique at
each vertex. This can improve the robustness of existing al-
gorithms. For example, it is well-known that the cotangent
weights can be negative. On the poorly-tessellated bunny
mesh in Fig. 12 there are many negative weights at the base
of the ears, leading to large foldovers. However, if we replace
the cotan weights with uniform weights on the ear vertices
and solve for t°P', we resolve the foldovers while leaving the
rest of the parameterization largely unchanged.

6. Results

The examples we have considered thus far are somewhat ar-
tificial, in that they ultimately came from meshes. We now
consider several point-sets from PointShop3D [ZPKGO02],
for which mesh topology was not available.

We have implemented our techniques in Matlab, with the
DEM computation done using C++ code. Our software and

() (e ()

Figure 12: A highly irregular bunny mesh (a) has many
interior vertices with negative cotan weights (yellow). The
resulting parameterization (b) has extensive foldovers in the
ear region (c). We construct a hybrid weight matrix by re-
placing the cotan weights with uniform weights on the ear
vertices (d, yellow), and solving for optimized SCP. The re-
sult is visually similar (e), but the foldovers are avoided (f).

results are available from (witheld for anonymous submis-
sion). To run our tests, we first constructed a Euclidean K-
NN neighbourhood graph with K = 8. We then compute the
average edge-length /, and approximate 7, at each point.
Within each tangent-space, we construct a geodesic K-€ ball
with K = 6 and € = 2.5/, then estimate the boundary loop,
compute W', and solve for the parameterization. Option-
ally, we compute a Delaunay triangulation in the plane. As-
suming the map has no foldovers, this is a trivial way to mesh
a point-set surface, and in near-conformal parameterizations
the resulting mesh is of very high quality.

Our first test is the Gnome model (Fig. 13). This surface
is nearly-symmetric and mainly regularly sampled, with a
small strip of irregular sampling where it appears that two
scans were marged. We see that the Dirichlet parameteri-
zation (SDP) preserves this symmetry but has high quasi-
conformal (QC) distortion [KSS06], while the conformal
map (OCP) has low QC-distortion but some symmetry is
lost. We have found this to be a general trend - in this case
and most others, the boundary loop is not symmetric, which
has a more significant effect in OCP.

Using the near-regular parameter-space Delaunay mesh,
we can compare to SCP. We find very low QC-distortion
but the irregular region causes significant asymmetry. Us-
ing the area-weighted variant of SCP described in Mullen
et al. [MTADOS] improves symmetry but increases QC-
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distortion. This example shows that our tangent-space
weights confer some independence from sampling regular-
ity, suggesting that there may be advantages to a meshless
approach even if a mesh is available.

Note, however, that while our techniques can handle ir-
regular sampling, they do require a point set dense enough
to adequately represent the surface. While this is generally
the case for point-set models, one advantange of a meshless
approach is that a point set can be trivially subsampled by
discarding points. It is then straightforward to compute the
DEM on the reduced set for each remaining point, and em-
bed it using barycentric interpolation. However, as we see in
Fig. 14, too sparse a sampling leads to high QC-distortion
and a “sheared” mesh.

Finally, as with SCP our method can handle surfaces with
holes (Fig. 15). In this case and the previous example, the
subsampled point-set is dense but highly irregular. This is
not an issue for our weight computation, but is problematic
for our naive boundary estimator. In both Figures 14 and 15
we observe a small “pointy” region of high QC-distortion.
On closer examination we find that this region is has an
“outlier’ sample. Even on a flattened version of the mesh,
we find very high reconstruction error (Fig. 5) and large
negative weights at this point. The same effect occurs on
a smaller scale at other dark red boundary regions in each
QC-distortion image. Hence, more robust boundary estima-
tion and outlier removal will improve these results.

We also experimented with parameterizing raw scan data,

e ) (i
Figure 13: Gnome model (13k pts) flattened with SDP
(top row) and OCP (middle row). Left column shows quasi-
conformal (QC) distortion. A strip of irregular samples (g)
leads to a loss of symmetry in SCP (h), while the area-
weighted SCP variant has high QC-distortion (i).

(d)

Figure 14: Igea model (130k pts) with OCP at 1/4 (top) and
1/10 (bottom) resolution.

but found two problems. First, raw scans are rarely manifold,
and second, scans are usually very sparse and noisy around
boundaries, which is problematic since we depend on good
boundaries. Although our methods could perhaps be made
robust to these issues, it seems more practical to rely on au-
tomatic scan clean-up algorithms.

7. Conclusion and Future Work

We described an improved discrete exponential map ap-
proximation of local tangent-spaces and new tangent-space
graph Laplacian weights. Using this machinery, we con-
structed spectral methods to generate Dirichlet and confor-
mal parameterizations of point-set surfaces. Our approach
also improves existing mesh-based techniques, and leads to
robust free-boundary parameterizations with uniform, au-
thalic, mean-value, and mixed weight matrices.

It has recently been shown that while heat-kernel (Gaus-
sian) Laplacians with a fixed Euclidean €e-ball radius con-
verges to A g as sampling density increases, the cotangent
Laplacian does not [BSWO08]. Essentially, convergence oc-
curs because the local integral takes an increasing number of
samples into account, where the cotangent Laplacian is lim-
ited to a mesh one-ring, However, the heat-kernel weights
do not minimize reconstruction error, and generate low-
quality parameterizations. Our tangent-space graph Lapla-
cian weights share some of the “geometry-preserving” prop-
erties of the cotangent weights, while also being able to take
an increasing number of samples into account, and our re-
sults indicate that the tangent-space weights provide a rea-
sonable approximation of A g. This suggests that it may be
possible to derive a formulation which is representative of
the geometry and also convergent.
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