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The idea that a complex object can be decomposed into simpler parts is fundamental to

3D design, so it is clearly desirable that digital representations of 3D shapes incorporate

this part information. While solid modeling techniques based on set-theoretic volumet-

ric composition intrinsically support hierarchical part-based shape descriptions, organic

objects such as a human vertebra are more efficiently represented by surface modeling

techniques. And although a human observer will easily identify part decompositions in

surface models, the homogenous graphs of connected points and edges used in surface

representations do not readily support explicit part decompositions.

In this thesis, I will develop a part-based representation for 3D surface models. In

abstract mathematics, a surface part can be represented as a deformation of a Riemannian

manifold. To create a practical implementation, it is necessary to define representations

of the 3D part shape and the region on the target surface where the part is to be placed.

To represent the part region I will develop the Discrete Exponential Map (DEM), an

algorithm which approximates the intrinsic normal coordinates on manifolds. To support

arbitrary part shapes I will develop the COILS surface deformation, a robust geometric

differential representation of point-sampled surfaces. Based on this part definition, I

will then propose the Surface Tree, which makes possible the representation of complex

shapes via a procedural, hierarchical composition of surface parts, analogous to the trees

used in solid modeling.

A major theme throughout the thesis is that part-based approaches have the po-

tential to make surface design interfaces significantly more efficient and expressive. To

explore this question and demonstrate the utility of my technical contributions, I present

three novel modeling tools: an interactive texture design interface, a drag-and-drop mesh

composition tool, and a sketch-based Surface Tree modeling environment. In addition

to comparative algorithmic evaluations, and a consideration of representational capabil-

ities, I have evaluated this body of work by publicly distributing my modeling tools. I
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will close the thesis with a discussion of the extensive feedback provided by users of my

drag-and-drop mesh composition tool, called meshmixer. This feedback suggests that

part-based approaches have significant benefits for surface modeling.
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Chapter 1

Introduction

All but the most basic natural and man-made objects are made up of a set of simpler parts
(Figure 1.1). Even an object which appears to be an atomic part to the layperson - say,
the volume knob on a speaker - will, to a designer, be further decomposable into bevels,
fillets, revolutions and sweeps. There is extensive evidence that even at the lowest levels
of our visual perception system, we understand the objects we see in terms of intrinsic
parts [Hoffman and Richards 1984; Biederman 1987]. It is understandable, then, that
part composition formed the basis for the earliest computer-aided design tools.

Figure 1.2 shows a simple example, where two parts - a cylinder and cube - are
functionally combined to create a more complex part. This compositional approach,
often referred to as solid modeling, provides a well-defined set of rules which, once learned,
can be applied to solve a wide range of problems. For example, the composite part in
Figure 1.2a can be altered by manipulating the parameters of its underlying components.

When one attempts to model more organic forms, such as those we encounter in the
natural world, the limitations of compositional solid modeling quickly become apparent.
We tend to see these sorts of shapes not as a set of combined volumes, but rather as a
smoothly-varying surface that flows from one part to another. It is natural then that a
designer would wish to create such an object by directly pushing or pulling on a virtual 3D

Figure 1.1: Most objects can be broken down into sets of discrete parts. Some objects,
such as the car in this figure, can be broken down into easily understood lists of parts.
For many classes of objects, though, the parts are difficult to precisely define. Such parts
often have no well-defined boundary; instead they smoothly blend together, resulting in a
continuous object surface. How can such parts be represented in a virtual model?

1



Chapter 1. Introduction 2

surface. Hence, surface modeling techniques have been developed to support this style of
3D interaction. Surface modeling tools utilize “thin-shell” digital surface representations,
or B-reps, which can be molded into the desired form using deformation operations.

Surface modeling provides great power to the artist, and supports the creation of
models with incredible levels of detail. However, virtually all surface modeling approaches
are mathematically assembled from networks of control points or handles, which can be
used to push and pull on the 3D surface. These networks are completely homogeneous;
individual control points lack the sort of higher-level semantic information found in the
primitives of solid modeling. As a result, the notion of underlying parts is lost.

A reasonable question is whether the idea of a part even makes sense in a surface
modeling context. Perhaps 3D sculptors truly think of their models as holistic objects,
formed in a single atomic operation. But consider the example in Figure 1.2d. If asked
for a description of this shape, I believe most readers will agree that “a sphere with a
bump on it” is a reasonable answer. This suggests that we do have some intuitive sense
of parts - there is a sphere and a bump, and they have somehow been combined.

Consider further the description “a sphere with a bump on it”. How can we convert
this description into a 3D shape representation? We know what a sphere is, but the
definition of a bump is less certain, as is the mechanism for placing it on the sphere. To
discuss such operations in a surface modeling context, we must resort to mathematical
minutia such as NURBS control points or mesh vertices. Contrast this with the similar
statement “a sphere with a hole through it”. Not only can we easily imagine such an
object, we can unambiguously interpret it as a CSG Tree without needing to decide if
we are using B-reps or implicit surfaces.

Although an artist may use language like “a sphere with a circular bump on it” to
describe a 3D surface model he or she has created, the part semantics of the statement
will not be represented in the underlying mathematical model. We have no way to talk
about where the bump is on the sphere, or even which part of the surface is the bump.
This limits our ability to predict what will happen if we replace the sphere with a cube,
or move the bump somewhere else.

I believe that our inability to concisely describe a surface model in a representation-

Figure 1.2: We have a good understanding of part semantics for compositional, volume-
based modeling operations. A shape like that in (a) can be described by a tree of solid
modeling operations (b). Changes like “move the cylinder to the right” (c) can be ex-
pressed as modifications to this tree. But what about for surface modeling operations?
Figure (d) is clearly a sphere with a bump on it, but what is the bump? Can we decom-
pose this shape into a tree of operations (e)? What would it mean to “move” the bump
(f)?



Chapter 1. Introduction 3

independent language is a significant problem. It seems that the fundamental issue is
that we lack a concrete sense of what a part is for surface models. As we will see, once we
define a surface model Part, many of the ambiguities noted above are easily resolved.
In addition, once Partsare well-defined, it will become relatively straightforward to
construct a hierarchical, procedural representation for surface models which is analogous
to the CSG Tree of solid modeling.

From a practical standpoint, Part-based surface modeling will allow us to take a step
towards the “holy grail” of representation-agnostic 3D modeling interfaces. To this end,
I will present three novel Part-based 3D design tools. By operating at the Partlevel,
these tools easily abstract away the underlying surface mathematics, allowing the artist
to focus on the artistic aspects of shape modeling tasks. The feedback from artists who
have experimented with these tools has been highly positive.

1.1 Thesis Overview

In the following chapters I will explore issues relating to Part-based 3D surface mod-
eling. In some sense, the underlying goal of my work is to convince the reader that a
representation which explicitly represents a Part decomposition of a 3D surface has the
capability to more effectively capture the part semantics of the model than traditional
surface representations. These semantics include not only the Parts of the surface, but
also their relationships and the operations we might wish to apply to them.

This is of course quite a broad problem, so in the context of this thesis my goal
will be more modest. My primary aim is only to determine how to represent a Part
decomposition of a 3D surface at the data structure level. Although at some conceptual
level it does seem obvious that this should be possible, existing approaches which could be
interpreted as attempting to address the same problem [Forsey and Bartels 1988; Barghiel
et al. 1994], involved many restrictive assumptions. Hence, at the practical level it was
initially unclear that a generic Partbased representation of 3D meshes would be possible.
So, I could perhaps pose my research question as:

Can the data structure underlying a modern 3D surface model, namely a
single mesh of homogeneous polygons, be decomposed into a data structure
based on a set of discrete Parts and procedural composition operators, such
that the product of these Parts and operators reproduces a similar mesh?

The above is one of the major problems I will consider. However, my goal is not
simply representational capability, but also utility. Hence, I would expand the above
question to include the following;

Would such a procedural Part-based surface decomposition support novel
3D shape design techniques that are not readily available without said de-
composition?

The main result of this thesis is to answer the above two questions in the affirmative, at
least for relatively broad classes of surface Parts. I will describe a suite of algorithms,
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data structures, and user interfaces that, in aggregate, support my claim that Part
decomposition of surfaces is not only possible, but useful. To simplify the presentation
of this material, I will consider the following three more basic questions:

• How can a 3D surface Part be defined and represented?

• How can surface Parts be combined into a procedural representation?

• How can Part-based techniques be applied in 3D design tools?

As we will see in Chapter 2, there are many existing works which have to some degree
explored Part-based surface modeling. For example, any spatial deformation with local
support applied to a surface model implicitly defines a Part. However, these sorts of
Parts are generally transient, and will be lost when the current modeling operation is
completed. Surface analysis techniques like symmetry detection and mesh segmentation
are fundamentally attempts to infer the Part breakdown of a surface. To date these
techniques do not infer any sort of layering relationships, leading to seemingly arbitrary
segmentation boundaries on smooth surfaces. We will also consider examples where
meaningful Part boundaries do not have any of the intrinsic geometric features such
algorithms depend on.

To motivate a more robust definition of a surface Part, in Chapter 3 I will first con-
sider what Parts might be used for, in the context of current shape modeling practices.
The main finding of this exploration is that certain shape modeling operations which are
intuitively simple are in practice virtually impossible to carry out efficiently with current
tools. For example, the simple operation of resizing the sphere that lies underneath the
bump in Figure 1.2d, while keeping the size of the bump fixed, is monumentally difficult
for a NURBS or SubD representation.

A small set of such examples will lead us to a set of properties that are desirable
for any definition of a surface Part. An elegant way to satisfy these requirements is
to utilize the manifold formalism, which provides a global parameterization for smooth
3D surfaces. We will then decompose a surface Part into the region of the surface that
it modifies - a domain - and the new spatial configuration for that region - a shape.
The Part domain can be encoded in the manifold parameterization of the underlying
surface on which the Part rests, and will then be well-defined even after significant
deformation of the underlying surface. Similarly, the shape of a Part can be encoded as
a deformation of the portion of the underlying manifold specified by the Part domain.
Hence, we will see that a well-defined surface Part involves no more than a region in a
parameterization, and a deformation operation applied to that region.

Unfortunately, imposing a full manifold structure on an existing 3D surface is very
difficult. The few techniques which have been developed are based on computationally
intensive iterative fitting of meshes, and do not specifically handle manifold deformations.
Hence, I will make the simplifying assumption that the Part domain can be bounded
by a geodesic disc centered at some point p. In this case the underlying surface can
be intrinsically parameterized using the normal coordinates at p, defining a local 2D
coordinate system “on the surface” in which the Part domain can be stored. In Chapter 4
I will introduce the Discrete Exponential Map (DEM), an algorithm which approximates
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normal coordinates on point-sampled surfaces. The DEM is robust, reasonably accurate,
and most importantly, very efficient. I will consider several simple modifications that
enhance the stability of the original DEM, and perform empirical evaluations of numerical
accuracy and convergence. To demonstrate the utility of this technique, I present a simple
but powerful Part-based texture design interface1.

The second component of my Part definition involves deforming a portion of the
manifold to create the intended Part shape. In Chapter 5 we will consider various
methods to implement such operations on discrete surfaces. We will focus on differential
representations which represent the desired shape as a field of local geometric informa-
tion. Combined with suitable boundary conditions embedded in the underlying manifold
parameterization, this approach allows the shape to be reconstructed at any location on
a surface while avoiding dependency on global coordinate frames. Existing work focuses
on variational approaches to the reconstruction problem, however we will see that there
are several practical drawbacks to such methods. To address these issues I will introduce
the COILS deformer, a geometric analog of variational techniques. Combined with the
DEM parameterization, this algorithm provides an implementable surface Part defini-
tion. To explore Part-based interaction in a shape modeling context, I will present a
novel drag-and-drop interface for editing and compositing 3D surfaces.

Given our well-defined surface Part, we can now attempt to construct a procedural
surface representation with properties similar to the CSG Tree. In Chapter 6 I propose
the Surface Tree, which can represent a complex 3D surface as a hierarchy of procedurally-
combined Parts. Unlike the CSG Tree, in which all Parts exist in R3, each Part in
a Surface Tree is defined in an abstract and independent two-dimensional space embed-
ded in some underlying manifold. This complicates conceptually simple operations like
inserting a node into the tree, or moving a Part to a different location on the manifold.
I will describe how to carry out such operations, and also present data structures which
allow a Surface Tree to be efficiently implemented. These techniques will then be put to
use in a Surface Tree creation and editing tool. This interface will also be used to demon-
strate some of the benefits of Part-based procedural modeling which have never before
been possible on surface models, such as the linking of parameters of layered Parts.

In Chapter 7, I will evaluate my work along two axes. The interactive tools described
in Chapters 4, 5, and 6 provide an opportunity to consider the utility of Part-based
surface modeling, particularly with respect to current 3D modeling practices. I have
had some success distributing my tools to artists, and will discuss feedback gleaned from
this experience. I will then consider the question of representational capability, focus-
ing on the limits of my theoretical continuous-manifold Part definition, and its practical
DEM+COILS implementation. We will see that the DEM is the biggest stumbling block,
and I will propose some potential alternatives for future study. Other possible applica-
tions of Part-based modeling and the Surface Tree will also be considered, including
animation and layered NURBS/SubD modeling.

1Many surface texture elements can be thought of as Parts “in the plane”



Chapter 2

Background

A wide range of previous works have addressed Part-based shape representation to
some extent, although often not explicitly. Similarly, most surface representations and
modeling techniques have some procedural aspects, and hence may be adaptable for use
in compositional surface hierarchies. And many geometric analysis techniques aim to
detect salient Parts that coincide with those a human observer would identify.

In this chapter I will review works that I consider to be relevant to the general problem
of procedural Part-based modeling and interaction. This survey will by no means be ex-
haustive, but does form the basis for my understanding of the issues, and I hope will give
the reader a sufficient background to follow the rest of this thesis. Background material
relevant to specific chapters, such the normal coordinates and mesh parameterizations
used in Chapter 4, will be provided when necessary.

Although my interest is in surface representations, I will first consider volumetric
solid modeling, as it perhaps best embodies the properties of Part-based procedural
modeling that I wish to develop for surfaces. After discussing these properties and some
general procedural modeling concepts, I will consider the various approaches to surface
modeling which have been explored, focusing on techniques that have some Part-based
or procedural component. I will then briefly explore the state-of-the-art in shape analysis,
which will inform the discussion of surface Parts in the next chapter, and consider some
Part-based interaction techniques which have been proposed.

2.1 Solid Modeling

Much of the early work in shape modeling was devoted to solid modeling techniques [Re-
quicha and Voelcker 1983; Mantyla 1988; Hoffmann 1989]. Using a solid modeling system,
the designer can construct complex models by combining simpler volumes. Solid mod-
eling generally utilizes a tree of procedural operations known as a CSG Tree. Simple
primitives lie at the leaves of the tree, and interior nodes define compositions of their in-
puts (which can be either primitives, or the outputs of other nodes). The root node of the
tree defines the current model. The volume of a primitive is defined as sets of points in
R3, and composition operations are simply set operations on R3, with the Boolean opera-
tors (union, intersection, and difference or subtraction) being the most common. Within

6
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this framework any solid Part can be composed with any other, using any operator.
This statement holds even if we don’t know what the Parts and operators are.

Early off-line, script-based CSG systems have evolved into powerful interactive tools,
which are utilized extensively in modern engineering design. Some tools attempt to
shield the designer from having to explicitly interact with the CSG Tree, by inferring the
intended tree modifications from the designer’s actions. The use of regularized Boolean
operations [Foley et al. 1993] avoids anomalous cases such as surfaces with zero volume,
ensuring that a valid solid model is produced at each node in the tree.

The description above of solid modeling as set operations on R3 is an abstraction
which can be realized in many ways [Hoffmann and Rossignac 1996]. Functional tech-
niques [Rvachev 1963; Ricci 1973] are perhaps the most mathematically rigorous, al-
though more flexible boundary representations, or B-Reps [Requicha and Voelcker 1983],
are dominant in commercial systems.

2.1.1 Implicit Modeling

The key limitation of most solid modeling systems is that they do not easily support
the creation of the wide classes of shapes that have smoothly-varying surfaces. These
types of surface, often referred to as “freeform” or “organic”, are difficult to classify
but generally have the property that they do not have obvious breakdowns into a set of
geometric primitives and composition operations.

In response, implicit volumetric modeling techniques [Blinn 1982; Wyvill et al. 1986]1

have been developed to augment the standard CSG framework. Briefly, implicit volumes
are defined by the iso-contours of a 3D scalar field F (x). For example, the scalar field of
a sphere could be defined by F (x, y, z) = x2 + y2 + z2. Then a spherical implicit surface
of radius r is defined by F (x, y, z) = r2, and an implicit volume by F (x, y, z) ≤ r2. These
functions can be trivially combined; for example, the union of two implicit functions can
be defined by min(F1, F2). Similar functional compositions can be used to create smooth
blends between volumes. The resulting “extended” CSG Tree, sometimes referred to as
the BlobTree, integrates support for hierarchical blending and functional warping [Wyvill
et al. 1999; Pasko et al. 1995]. Recent systems based on this framework can be used to
interactively create complex, hierarchical freeform models [Schmidt 2006].

Still, this approach is based on composition of primitive shapes, which limits the
designer’s control over the model surface. Recent work has begun to explore ways to lift
this restriction, with curve-based implicit sweeps [Schmidt 2006] and space warps that
mimic surface push-and-pull [Sugihara et al. 2010]. However, the current state-of-the-art
provides nowhere near the flexibility of surface representations in this respect.

One approach may be to automatically convert surface representations to volumetric
formats for procedural composition, as in the Hybrid Tree [Allègre et al. 2004]. Such
conversions are computationally expensive and tend to cause a loss in geometric fidelity.
More importantly, converting to volumes results in volumetric-style compositions, rather
than the deformation+stitching that is more in line with surface-based modeling.

1These representations are often grouped with other functional surface representations under the
term implicit surfaces. Here we refer specifically to the volumetric representations.
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2.2 Procedural Modeling

In the field of computer graphics, the term procedural model generally refers to a 3D
model which is produced by a well-defined series of functions. Such functions can either
take a set of parameters and output a 3D model, or take an input model, modify it, and
output a new model. As in CSG, we refer to either type of function as a node, and the
former specifically as a primitive node. Primitives are often understood to be the Parts
of the model, although the intermediate output of any node could also reasonably be
considered a Part.

In some sense, all 3D modeling is procedural, however in most cases node n+1 is highly
dependent on node n. This dependency limits any advantages in usability or expressive
power that could possibly be derived from the sequence of nodes. Utility only arises when
the procedural operations can be abstracted in some useful way. For example, in CSG
models defined by a binary tree of Boolean compositions, we can make high-level changes
to the model by manipulating the abstract tree representation. Representations which
allow a complex model to be represented in a useful abstract form have many advantages.
I will refer to this property as the level of abstraction supported by a representation.

One of the key properties which enables abstraction is the independence of nodes in
the procedural definition. By this I mean that the nodes are self-contained; they do not
depend on any external geometric information. For example, compositions in a CSG
tree take “black boxes” of points in R3 as input, so there are no constraints on how
Parts are used. This is perhaps the most difficult property to reproduce in Part-based
procedural surface modeling. Note that independence can be decomposed into technical
and aesthetic components. We will see many representations where the form of a Part
is tightly coupled with the state of the surface at the time of Part creation. Although
technically these Parts can be transferred to another surface, the form will be lost, which
provides little utility for the artist.

Another desirable property of a procedural representation is the ability to organize
nodes into some meaningful hierarchy. Hierarchy is beneficial because it allows complex-
ity to be encapsulated, which is important for both usability and computational efficiency.
Managing complex models is much more difficult with representations that lack hierar-
chy. For example, the Fibermesh [Nealen et al. 2007] system generates a surface from a
sparse network of 3D curves, and hence could be considered a procedural representation.
To increase surface detail, more and more curves must be added to the network. Each
new curve adds complexity, and ultimately the overhead of managing the curve network
may limit the expressive power of the representation.

Again, virtually any sequence of editing operations can be considered a “hierarchy”
(albeit a linear one). An important property of representations such as CSG is that the
hierarchy can have branches. Branching is made possible by composition nodes that take
multiple input primitives. Composability allows us to form complex Parts from simpler
ones, which can themselves be used as Parts. For example, in CSG an entire branch of
the model can be used as an atomic Part in another CSG Tree.

Although not completely orthogonal or complete, these properties - abstraction, inde-
pendence, hierarchy, and composability - are useful axes on which to evaluate approaches
to procedural modeling A somewhat more complex property, which is critical to this
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thesis, is suitability for use in interactive 3D modeling tools. An infinite number of
arbitrarily complex surfaces can be described using L-systems [Prusinkiewicz and Lin-
denmayer 1991] and other specialized procedural languages for generating geometry, but
the designer must think in terms of recursive functions, scripting commands, and abstract
parameters. These non-interactive techniques have been a focus of extensive work [Ebert
2002], but are outside the scope of this thesis.

2.2.1 Dependency Graphs and Construction Histories

The CSG tree is a somewhat abstract concept, but once understood, designers can easily
interact with it. Each node is dependent only on its inputs, so changes to a node can
automatically propagate up the tree. This type of structure is generally referred to as a
dependency graph.

Solid modeling is only one use of dependency graphs in computer graphics. De-
pendency graph architectures have been applied to most major problems in computer
graphics, some key examples are the ConMan visual programming environment [Hae-
berli 1988], the apE dataflow modeling and visualization framework [Schröder 1995], and
the shader networks used in rendering systems [Cook 1984]. Commercial freeform mod-
eling and animation packages such as Maya [Autodesk Inc. 2010e] are built on top of
generalized dependency frameworks in the form of directed acyclic graphs, or DAGs. For
example, in Maya, a designer can sweep one NURBS curve along another, creating an
extrusion. Each NURBS curve, the output extrusion, and even parameters of the extru-
sion operation, can be represented as nodes in the DAG. Changes made to any of these
nodes propagate forwards to the output extrusion. Even basic mesh-editing operations
are represented in the Maya DAG.

The generalized DAGs in modern interactive systems are often automatically gener-
ated, although the user can directly manipulate them (and is usually required to do so
if non-trivial behavior is desired). Such DAGs represent the construction history of the
current model. This notion of construction history is a powerful one, with potentially
far-reaching consequences for modeling capability and efficiency. However, only a few
commercial systems manage to exploit this possibility to any significant effect. The main
challenge lies in designing suitable visualizations which can expose construction history
to the user, and interfaces which can be used to effectively manipulate the history.

Automated construction history tracking does have some limitations, in particular
with respect to the manipulation of control meshes, which are common to both NURBS
and subdivision modeling. Many useful editing operations are implemented such that
they depend on specific control network topology (faces, iso-contours, edge-rings, etc)
which currently cannot easily be generalized, resulting in undesirable constraints on the
upstream DAG. Hence, although DAGs tend to support composition and hierarchy, they
have limited capabilities for abstraction and independence of nodes.

2.2.2 Parametric Modeling

Dependency graphs (DAGs) are a powerful tool for procedural surface modeling. How-
ever, because abstraction is often limited, complex models in tools like Maya [Autodesk
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Inc. 2010e] tend to be constructed out of many smaller, independent DAGs, rather than
a single large one. A related limitation is that the one-way flow of data in a DAG limits
the types of constraints which can be specified between objects. Hence, the designer may
need to update many dependencies by hand if a Part of the model changes.

As a result, DAG frameworks can be cumbersome if the model must satisfy a large
set of design constraints. Any design change which must propagate to many model com-
ponents results in large amount of manual labour. Parametric modeling [Shapiro and
Vossler 1995; Shah and Mantyla 1995] allows the designer to directly specify arbitrary
dependencies between parameters of the model. A trivial example would be a param-
eterized chair, where changing the length of a leg re-scales the entire model. The key
difference here is that the constraints are specified as equivalence relationships between
parameters, rather than directed links, so changing the scale on some other Part of the
model will update the radius of the leg.

More advanced systems support complex, possibly conflicting geometric constraints,
and even engineering-analysis constraints. For example, the constraint solver can propa-
gate changes from one Part of the chair to the others, while also ensuring that the chair
both supports a maximum weight and does not become too heavy.

Parametric modeling is a very powerful concept, which is applied to great effect in
commercial solid-modeling systems [Dassault Systemes / Solidworks Corp. 2010; Au-
todesk Inc. 2010d], but is relatively un-explored in surface modeling domains. It seems
likely that this disparity is in part due to the lack of widely available procedural surface
representations and modeling interfaces. Techniques for defining and solving systems
of parametric constraints over arbitrary surfaces cannot be developed until Parts of
surfaces can be represented parametrically.

2.2.3 Interactive Procedural Modeling

Procedural models in general have a large amount of “hidden complexity” - abstract
parameters and structures that are difficult to visualize in a way that is immediately
obvious to the user. Many tools simply expose this complexity in abstract views, such as
traditional 2D tree widgets, dialog boxes, and large numbers of abstract parameters. This
type of interface generally has a very steep learning curve, necessitating extensive and
often expensive training. Hence, many systems based on DAGs or parametric modeling
support some level of direct interaction with the 3D model.

Visual manipulation of a procedural node is most straightforward when the “param-
eters” are themselves geometric elements, such as the profile curve that generates an
extrusion [Havemann 2005]. Editing the curve directly controls the procedural output.
In the domain of grammar-based procedural building generation, several authors have
attempted to develop interactive tools to manipulate the underlying shape grammars.
The dynamic components module of Google SketchUp [Google Inc. 2007] allows spatial
relationships and simple geometric constraints to be assigned to solid Parts using a
spreadsheet-style authoring tool, and then manipulated using visual widgets. Lipp et al.
[Lipp et al. 2008] describes semantic selection tools that interrogate the model hierarchy
for Parts whose semantic tags match a given query. For example, all the windows who
have the same “column” value can be selected, even if they are in different branches of
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the model tree. The selected windows can then be edited using 3D handles, or replaced
by a different window type in a shape library. Similar interfaces have been developed for
editing 2D road networks [Bruneton and Neyret 2008; Chen et al. 2008].

Note, however, that most of these tools involve a set of interface elements that are
highly specialized to the underlying shape grammar in use. Although smooth surfaces
are sometimes generated [Havemann 2005], current interactive procedural modeling tools
essentially present solid modeling interfaces to the designer.

One of the main issues in interactive procedural tools is the persistence problem, which
roughly is the challenge of maintaining a consistent procedural model as the artist makes
arbitrary changes to different components. For example, layered geometric components
(windows on a wall, etc) are often positioned relative to specific faces in the model. If
those faces are modified, the system may be unable to sensibly position the dependent
elements. As we will see in Chapter 6, handling changes to the model hierarchy is one of
the more difficult problems in Part-based procedural surface modeling.

2.3 Surface Modeling

Although implicit solid modeling can generate organic shapes, it does so at great cost,
and provides at best indirect control over the surface shape. Surface-based modeling
techniques have thus been developed to satisfy the demands of designers who wish to
directly manipulate 3D surfaces. Although a wide range of surface representations have
been developed, only the few I will now discuss have seen any measurable adoption:

Spline Patches are based on three smooth coordinate mappings from a parameter
domain in R2. Perhaps the most common examples are bicubic Bezier and B-Spline
patches, in which the coordinate maps are defined via a grid of control points in 3D [Farin
2002; Bartels et al. 1995].

Polygonal Meshes are formed by stitching together a set of 3D polygonal faces, creat-
ing a graph of edges and vertices. Polygonal meshes are sometimes cast as piecewise-linear
spline patches.

Point Set Surfaces are defined by a set of points in 3D, to which a series of locally-
supported approximation functions are fit and functionally composed [Alexa et al. 2001].
A standard example is Moving Least-Squares (MLS) surfaces [Lancaster and Salkauskas
1981; Levin 1998], based on fitting planes to ε-ball neighbourhoods. More complex
projection operators [Guennebaud and Gross 2007; Alexa and Adamson 2009] allow for
complex surfaces to be defined by a relatively small number of points.

Subdivision Surfaces are defined by progressive refinement rules applied to an initial
polygonal mesh. For example, Catmull-Clark subdivision inserts new vertices at the cen-
ter of each edge and face [Catmull and Clark 1978], and then displaces the vertices based
on simple linear weights. If the initial mesh is a grid of regular quads, this subdivision
process converges to the bi-cubic B-spline surface defined by the grid.
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Manifold Surfaces are also based on an initial polygonal mesh, but define a set of
smooth transition functions between parameter spaces defined on each face, edge, and
vertex [Grimm and Hughes 1995; Ying and Zorin 2004]. The resulting surfaces are com-
putationally more expensive than Subdivision surfaces, but mathematically smoother
and have the added benefit of a built-in global parameterization, as I will later discuss.

These are only a few of the many surface representations which have been devised.
However, the commonality between virtually all such representations is that they are
ultimately defined by three components: (1) a set of 3D point samples, (2) connectivity
information, and (3) a “blending” function which generates a continuous surface based
on the graph of points and edges. Note that this graph may or may not have neighbour-
hoods which are locally planar2. For example, in point set surfaces connectivity is often
determined via Euclidean ε-balls.

This simple 3D-graph representation is what gives surface modeling its power - as
long as the graph remains valid for the given representation, the artist may shape and
deform it as necessary. However, the natural components of the graph - faces, vertices,
and edges - are too granular and homogeneous to be useful as primitives in a procedural
model. Put simply, no vertex is different from any other. Hence, to define Parts we must
somehow integrate higher-level information about larger regions of surface. As we will
see, the way in which surface regions are demarcated is the main differentiator between
the many different approaches to procedural surface modeling.

2.3.1 Spatial Deformation

As noted above, a drawback of primitive-based constructive modeling is that the designer
can only indirectly influence the shape of the model surface. In freeform modeling do-
mains, however, artists demand the ability to directly push or pull regions of a surface.
Hence, much of the work in surface modeling is focused on deformation. Deformation
tools generally rely on some sort of physical metaphor, allowing an artist to push, pull,
bend or twist the surface into a new shape.

Because of the limited interactive systems available at the time, early work in this
area focused on global deformations. The general approach is to functionally “warp”
the space in which the model is defined. For example, the popular Barr warps [Barr
1984] - twist, taper, and bend - are based on affine transformations parameterized over
space. Such warps have many desirable properties, such as being easily invertible, which
is crucial for application in implicit modeling frameworks. However, the approach is still
global, and since these warps are based on a few simple parameters, direct artistic control
over the model surface is still highly limited.

In contrast, Free-Form Deformation (FFD) techniques allow the designer to embed
any model (in whole or in part) in precisely-defined volumetric lattice [Sederberg and
Parry 1986; MacCracken and Joy 1996]. Points on the model are then represented as
convex combinations of lattice elements (usually vertices), allowing deformations of the

2Here I mean planar in the graph theory sense, i.e. the graph can be embedded in the plane without
any of the edges being forced to intersect.
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lattice to be efficiently transferred to the model. Initially FFD was controlled via indirect
control-point handles, however algorithmic improvements [Hsu et al. 1992] now allow
the designer to directly manipulate the surface, and the control-point deformations are
automatically inferred.

Lattice-based FFDs are not particularly suitable for local surface deformations be-
cause the artist must not only construct the lattice in the unconstrained space around
the target surface, but also predict which lattice control points will produce the desired
effect. A more flexible alternative is to implicitly define a deformation volume as an off-
set surface from freeform geometric components. The Wires technique [Singh and Fiume
1998] took precisely this approach - one or more arbitrary space curves is coupled with a
spatial falloff field to define a deformation volume. Manipulations of the curve can then
be transferred to points embedded in the volume. This general approach naturally ex-
tends to deformations controlled by polygonal mesh patches instead of curves [Singh and
Kokkevis 2000], and has recently been extended to curve-based manipulation of implicit
surfaces [Sugihara et al. 2010]. These techniques are well-suited to surface deformation
because the geometric curve and surface handles can be created directly on the target
surface, providing an interaction that feels like direct surface manipulation, although it is
in fact a volumetric deformation. The Wires and Wrap deformers have been implemented
in the commercial system Maya [Autodesk Inc. 2010e], where they have been found to
be quite intuitive to artists.

Other artist-driven volumetric deformation tools have been developed, such as the re-
cent Sweepers foldover-free sculpting tool [Angelidis et al. 2004b]. An extended divergence-
free formulation results in volume-preserving deformation [Angelidis et al. 2004a], a con-
cept which has been further explored [von Funck et al. 2006]. One limitation of these
techniques is that, as they are based on iterative temporal decomposition and path inte-
gration, they do not define global deformation fields that can be arbitrarily sampled or
easily inverted, limiting their applicability in some problem domains.

Spatial deformations are straightforward to integrate into procedural hierarchies be-
cause they are simply maps from R3 to R3. Most work in deformation does not explicitly
address Part-based interaction, however in some cases we can interpret a deforma-
tion action as describing a Part. For example, the Wires [Singh and Fiume 1998] and
Wrap [Singh and Kokkevis 2000] deformers combine a spatial deformation with a bounded
support field. This bounded support field defines a region on the surface, and also the
desired shape of this region, which, as we will see, are the two main components of my
surface Part.

Since they are composable, a sequence of bounded spatial deformations is effectively
a Part-based procedural surface definition. Lewis et al. [Lewis and Jones 2004] took
exactly such an approach, defining a procedural model as a sequence of simple deforma-
tions applied to artist-specified spatial volumes. The primary drawback is that the model
is highly constrained - although each node is technically abstract and independent, in
terms of the artistic semantics it is tightly coupled with a specific input surface.
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2.3.2 Displacement Maps

Perhaps the simplest procedural surface modeling technique is the displacement map. To
create a displacement map, we must simply define a function which takes a surface point
and normal and returns a displacement vector, which can then be added to the surface
point.

Early displacement maps were simply scalar fields over the surface which were multi-
plied by the surface normal field [Cook 1984], although the extension to arbitrary vector
fields is straightforward. Such fields can sometimes be defined analytically, but the most
common approach is to store them in a texture map, which is mapped to the surface
using a pre-determined parameterization. This simple technique has evolved into pow-
erful geometric texturing algorithms [Porumbescu et al. 2005; Elber 2005] which can
be used to tile arbitrarily-complex details across any parameterized surface. Recent
works have used level-set [Brodersen et al. 2007] and physical simulation [Schneider et al.
2009] techniques to dynamically generate local parameterizations for interactive geo-
metric texturing. Commercial tools for painting displacement layers have also become
popular [Pixologic, Inc. 2011; Autodesk Inc. 2010f].

Displacement maps can be layered to create a procedural model. This approach is
more flexible than composing spatial deformations because the orientation-independent
details can be re-applied when the 3D surface is deformed. We can even create a proce-
dural hierarchy of Parts simply by placing the displacements that describe each Part
in separate layers. However, as the displacements are specified relative to the state of
the surface at the time they are created, they are again coupled with a specific input
surface. This is particularly an issue if the Part involves complex protruding geometry,
which can become highly deformed when the underlying normal field changes. Recent
work has attempted to address this problem by finding a local spatial deformation that,
when coupled with the original displacements, produces a more rigid shape [Brodersen
et al. 2007]. The displacement volume technique presented by Botsch et al. [Botsch and
Kobbelt 2003] has a similar goal and could perhaps be adapted to local use, although it
does involve a costly non-linear optimization.

2.3.3 H-Splines and Surface Pasting

Most shape modeling tools based on displacement also “bake” each displacement op-
eration into the final model. However, one line of work has focused on representing
layered displacements in a procedural hierarchy. The first step was the Hierarchical
Spline (H-Spline), proposed by Forsey and Bartels [Forsey and Bartels 1988]. The Parts
in H-Splines were represented by local refinements in the control point network of an
initial B-Spline surface. These local refinements, called detail overlays by the authors,
were simply a set of displacement vectors stored in the natural parameterization of the
base B-Spline surface. Hence, the detail overlays were precisely local displacement maps,
applied to the control point grid.

The main limitation of H-Splines was that the detail overlays had to be aligned with
the B-spline control point grid, limiting the ability of the artist to control where detail was
added. This lead to the development of Surface Pasting [Barghiel et al. 1994], perhaps the
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only existing work that focuses specifically on interactive Part-based procedural surface
representation Surface Pasting allows NURBS patches to be hierarchically layered onto
a base spline patch. Each layer is represented as a polygon in the parameter space of the
base patch, and hence can be arbitrarily shaped and oriented. The control points of the
layer are defined as displacement vectors, stored in the parameter space.

While in theory capable of procedurally representing any shape, Surface Pasting has
many practical limitations. Expensive spline displacement is approximated by trimming
holes in the base surface and simply positioning the “paste” surface in the trimmed hole.
The result is only ε-continuous, which initially often left large gaps, although a significant
amount of later work has greatly reduced the gap size [Conrad and Mann 2000; Leung and
Mann 2003; Siu and Mann 2003]. This trimming approach is computationally restrictive
because it involves a global integration of all the pasted areas. Hence, as the hierarchy
grows, the trimming graph becomes increasingly complex and expensive to compute.

A pasted layer is represented by encoding its Greville points using offset-vectors de-
fined relative to the base surface frames. Hence, as with other displacement techniques,
the shape of the pasted surface may become highly deformed if the base surface is signif-
icantly curved. A variety of ad-hoc methods have been developed to try to reduce this
distortion, with limited success [Leung and Mann 2003; Siu and Mann 2003].

Surface Pasting produces a representation that is clearly a graph of Part nodes,
represented as layered local displacement maps. Modeling tools based on Surface Pasting
demonstrated some of the power of this approach, such as operations like interactive
dragging of a Part across a surface [Chan et al. 1997] and interactive surface-pulling
manipulations at different levels of the hierarchy [Ma 2000]. Surface Pasting has been also
applied in the commercial modeling package Houdini [Side Effects Software Inc. 2007].

Surface Pasting does share the same fundamental limitation of other displacement
mapping techniques, namely the dependence on a global parameterization discussed
above. Hence, as Parts are manipulated, they and any Parts layered on top of them
inherit the (frequently un-intuitive) distortions that occur in parameter space, as demon-
strated by Tsang et al. [Tsang and Mann 1998]. Similarly, the dependence on a global
planar parameterization prevents topology change.

2.3.4 Multiresolution Surfaces

H-Splines provided an interesting capability which had not been previously demonstrated.
Although H-Spline detail overlays were in a generic sense simply displacement maps, from
the point of view of the artist, they served to increase the complexity of the spline control
point grid and allow for higher levels of detail. However, because the layers were encoded
differentially, it was possible to manipulate the H-Spline at any grid resolution, and have
the result propagate to the higher detail levels.

An extensive amount of work has been done to extend this approach to surfaces
based on meshes. The basic principle is to iteratively apply refinement and displacement
steps to an initial base mesh. A wide variety of strategies for refinement and displacement
have been explored, usually based on wavelet [Lounsbery et al. 1997] or subdivision [Zorin
et al. 1997] techniques which converge to smooth surfaces under infinite iterations. The
resulting multiresolution surfaces are powerful tools which have been applied to many
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Figure 2.1: In the top row, an initial model is subdivided 5 times using the Catmull-Clark
refinement rules. The final model is simply a smoothed version of the original model. In
the bottom row, the same subdivision occurs, but multiresolution details are added at each
step, resulting in a final model which contains features not visible in the original surface.

problems. In particular, multiresolution Catmull-Clark [Catmull and Clark 1978] subdi-
vision surfaces are widely used in commercial tools [Autodesk Inc. 2010e; Pixologic, Inc.
2011; Autodesk Inc. 2010f].

Many multiresolution techniques ignore the notion of local refinement found in H-
Splines, instead applying global operators, although local subdivision techniques have
been developed [Pakdel and Samavati 2005]. Regardless of whether the subdivision
is local or global, multiresolution techniques usually take a different approach to the
displacement step. Rather than representing the displacements via texture maps and
parameterizations, displacements are stored for each vertex at each level of detail.

Storing displacements at vertices allows multiresolution techniques to be applied to a
mesh without needing a pre-determined parameterization. This in turn allows the topol-
ogy of the mesh to change during any refinement step, as in the Hybrid Mesh [Guskov
et al. 2002]. And we can again construct a procedural hierarchy of Parts simply by
having separate displacement layers for each Part. But in this case, we have traded
dependency on a parameterization for a tight coupling with a given mesh topology. Es-
sentially, the region of the Part would be the set of faces with vertices that have non-
zero displacements. This is not a particularly flexible representation, so to implement
higher-level Part-based interactions most works embed these face sets in local or global
parameterizations.

2.3.5 Manifold Surfaces

Manifold surfaces are related to multiresolution in that they define a smooth surface
based on an initial polygonal mesh. But rather than via iterative refinement, a manifold
is based on analytic transition functions between standardized parameter spaces defined
at each triangle, edge, and vertex [Grimm and Hughes 1995; Grimm 2004]. Each of these
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parameterizations is called a chart, and the set of charts is an atlas for the surface. The
main benefit of manifolds is that they provide an intrinsic global parameterization of the
surface. As I will discuss later, this in principle makes manifolds an ideal basis for a
procedural surface representation, although existing manifolds are difficult to utilize in
practice.

Grimm [Grimm 2005] describes one attempt to create a layered surface representation
using manifolds. The charts are all defined on the sphere, parameterized via stereographic
projection. To add a local mesh feature, the mesh is first embedded into the sphere,
defining the set of charts that need to be inserted into the atlas. The feature vertices
can then be dragged out into 3D, but are stored as relative displacement vectors. This
approach provides more flexibility than H-Splines and Surface Pasting, as the added
feature mesh can have any boundary shape, although the surface is still limited to the
same topology as the base parameter domain (the sphere).

Like H-Splines, Grimm’s Part is described by a region in a global parameterization,
in this case the feature mesh embedded in the sphere. This strategy similarly inherits the
limitations of methods based on a shared global parameterization, namely that the Part
region is coupled to the parametric distortion that existed at the time of its creation, and
hence cannot be easily transferred to another surface.

2.3.6 Variational Modeling

The general idea behind variational modeling is that the artist works in terms of fixed
geometric elements - lines, curves, and so on - and a smooth interpolating surface is au-
tomatically found by minimizing global energy functionals, primarily smoothness. Vari-
ational modeling was first proposed by Welch and Witkin [Welch and Witkin 1992] for
a simplified form of H-Splines, then later adapted to triangle meshes [Welch and Witkin
1994]. Although computationally intensive, recent work has linearized several of the
energy functions, allowing scalable interactive tools to be developed [Nealen et al. 2007].

As variational models define a surface via a sparse set of constraint elements, they
can be considered a somewhat abstract procedural representation, however to date no
aspects of hierarchy or layering have been developed. So a variational model is in one
sense simply a more complex form of the 3d-graph-with-blending-function used in most
“raw” surface representations. But the graph elements lack the homogeneity of those in a
mesh or NURBS patch - they have meaning to the designer, and hence they do represent
Parts of the model. As the variational constraints are so tightly coupled with each other
and the current surface, there does not seem to be any obvious way to utilize them as
independently-composable Parts.

2.3.7 Variational Mesh Deformation

As noted above, spatial deformations are fundamentally independent of the surfaces they
are meant to deform. In addition to causing problems when used to describe Parts, this
independence also limits the ability of surface deformations to preserve surface detail. The
designer must carefully construct deformations to avoid introducing unwanted distortions.
This issue has lead to an increasing focus on deformation techniques which are defined
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relative to the surface itself [Botsch and Sorkine 2008]. These methods adapt the energies
used in variational modeling, and hence have been referred to as variational deformations.
To use a variational deformation, the artist first selects a region on the surface, then
defines a new shape for that region by manipulating simple geometric handles which
constrain parts of the surface.

Taking an abstract view, we see that the artist has again defined a surface region and
a new shape for that region, and hence created a Part. The shape of the Part is not
defined by displacement vectors, but rather by differential information about the surface,
combined with some global energy function which is minimized to determine the Part
shape.

As we saw with multiresolution modeling, the region of a Part defined via variational
deformation is a set of triangles. Furthermore, the Part shape definition generally
involves handles - points, curves, and so on - which are independent elements positioned
in R3. Hence, a variational deformation is tightly coupled with a given mesh topology
and its 3D orientation. Although they can technically be procedurally layered, Parts
described via these mesh deformations are even less independent than displacement-map
Parts, as the intent of a given set of 3D handles is lost if an underlying layer is modified.

2.4 Surface Analysis

In the previous section I explored a variety of Part-based surface representations that
have been developed, and described how other representations could be adapted to Part-
based modeling. However, virtually all existing surface models are not represented as a
set of Parts, but rather as using a “flat” representation. Similarly, many 3D capture
technologies as range scanners or structure-from-motion will never provide a Part de-
composition of the objects they find. Hence, many works in computer graphics focus on
“reverse-engineering” 3D surfaces, to discover underlying structure.

2.4.1 Mesh Segmentation

Mesh segmentation is the problem of dividing a given mesh into disjoint sets of faces,
where each set satisfies some functional definition of a segment. Hence, the ultimate goal
of most segmentation works is to construct a geometric definition of Parts, and then
automatically divide the mesh into sets of faces which best satisfy this definition. For
example, one may define Parts as being regions separated by sharp creases in the mesh,
or regions that are geodesically convex, or perhaps regions that are well-approximated
by simple geometric primitives [Simari and Singh 2005].

A vast number of different segmentation strategies have been developed. See Shamir [Shamir
2008] for discussion of over 50 of these algorithms, and Chen et al. [Chen et al. 2009]
for a comparison of many techniques with human-authored segmentations. Some recent
work has even attempted to integrate many of these different techniques using machine
learning, to better-reproduce human segmentations [Kalogerakis et al. 2010].

In terms of finding Parts, these segmentation techniques are often very effective
on CAD-style models, particularly those generated via solid modeling. However, these



Chapter 2. Background 19

algorithms tend to have trouble with the smooth transitions found in organic surface
models, where there is no clear boundary, but yet the algorithm insists on splitting
the faces into disjoint sets. Some examples are shown on Figure 2.2. In these cases it
seems more sensible that the Parts be permitted to overlap (this may be an interesting
potential future direction for segmentation algorithms).

Another problem is that some relatively obvious Parts of a model may not have any
salient geometric features at the boundary for an algorithm to detect. For example, the
entire face in Figure 2.2c could be considered a Part, but the boundary of the face region
is not demarcated by any clear changes in curvature. This face clearly has sub-Parts,
so perhaps one could hierarchically define the face via grouping. Even those sub-parts,
however, do not have clearly-defined boundaries - the nose smoothly blends in to the
brow, for example. In general, it seems to be the case that Parts of organic surfaces
blend together at all scales, and hence lack distinct geometric boundaries at which to
uniquely partition the surface.

Figure 2.2: Example segmentations of the standard (a) Armadillo and (b) Dino models.
The boundaries between Parts are in some cases seemingly arbitrary, and can diverge
significantly from what one might expect (for example, the tail Part in (b)). The bound-
aries of some Parts which have clear semantic meaning, such as the face in (c), do not
appear to have any salient geometric features for a segmentation algorithm to detect.

2.4.2 Smart Selection

Mesh segmentation techniques are generally automatic, in the sense that the user is not
involved. However, many segmentation results can be improved by adding some user
guidance. Smart selection tools take exactly this approach, with the goal of allowing
the user to demarcate a Part boundary more efficiently than the brute-force strategy of
selecting each face of the Part.

Funkhouser et al. [Funkhouser et al. 2004] described intelligent scissors, in which
the user drew a stroke from a single viewpoint and a min-cut algorithm was used to
extend the stroke across the back-facing triangles. Several related methods employ min-
cuts, either based on strokes which roughly indicate the cut region [Lee et al. 2005], or
“scribbles” which indicate the body of the desired Parts [Brown et al. 2009]. Alternately,



Chapter 2. Background 20

a hierarchical segmentation of the surface can be performed, and then the user simply
has to click inside the intended Part region and roll the mouse wheel to find the desired
level of segmentation granularity [Attene et al. 2008].

One limitation of these techniques is that, like segmentation, they assume that Part
boundaries are demarcated by geometrically salient features. As I will show in the next
chapter, this is not always the case.

2.4.3 Structure Detection

Closely related to mesh segmentation is the problem of structure detection, in which the
focus is often on literally reverse-engineering a model to recover design intent. Gener-
ally reverse engineering tools are based on a segmentation, computed automatically or
manually, followed by fitting of sets of pre-determined primitives that map to operations
one would utilize in a 3D design tool [Varady et al. 1997]. Such reverse engineering
tools are often manually intensive, but are widely used in industry [Singh et al. 2004;
Geometry Systems Inc. 2010] to recover surface models (mainly NURBS and SubD) from
point-cloud data.

Several recent works in structure detection have focused on finding symmetric por-
tions of a surface [Simari et al. 2006; Mitra et al. 2006]. Symmetry and structural
regularity are extremely strong indicators of Part structure in both man-made and
natural shapes [Pauly et al. 2008]. For example, Li et al. [Li et al. 2010] do an impres-
sive job of reverse-engineering CAD models, extracting design intent from a hierarchical
symmetric decomposition. Another related line of work has attempted to infer model
skeletons [Baran and Popović 2007] and rigid joints [Xu et al. 2009b], which are then
used to better preserve model semantics during animation. In both cases the underlying
algorithm must also implicitly determine a Part decomposition of the model.

Once structure in a model has been detected, many interesting procedural-style edit-
ing capabilities are available. For example, Gal et al. [Gal et al. 2009] propose an
analyze-then-edit workflow, where symmetry and other geometric features are used to
detect networks of similar feature curves. Edits to one feature curve can then be propa-
gated to others, while maintaining salient geometric structure like circularity, right angles,
and so on. Similarly, Bokeloh et al. [Bokeloh et al. 2010] automatically derive a shape
grammar from an example model via symmetry detection, then can use the grammar to
generate new models, a process they call inverse procedural modeling.

Note that to date, automated structure detection has generally only been successfully
applied to CAD-style models - the sort of model one would construct with solid modeling.
Organic surface models have proven significantly harder to analyze. I believe this is in
large part because current attempts to decompose surface models into Partshave avoided
the issue of overlapping boundaries. In the next chapter I will attempt to convince the
reader that this is a critical property of parts on smooth surface models.
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2.5 Part-Based Interaction Techniques

So far, I have discussed how previous works represent Parts, and how Parts can be
found in existing models. However, my main interest is in how Part-based interaction
can make surface modeling more efficient. In this section I will briefly review some of the
Part-based interactions that have been proposed in the literature.

2.5.1 Displacement Stamping

The simple strategy of “baking” a displaced surface back into the original model is a
Part-based interaction used in many interactive modeling tools [Schneider et al. 2009;
Pixologic, Inc. 2011; Autodesk Inc. 2010f]. In such tools, the displacement Part is gen-
erally created independently, in some cases by editing the displacement map image itself,
and then stamped into the target surface. Displacement stamping is also used widely in
semi-interactive procedural geometric texturing tools, see Landreneau and Schaefer [Lan-
dreneau and Schaefer 2010] for a recent example and survey of related techniques. One
drawback of standard displacements is that they can easily self-intersect or stretch in
undesirable ways. Brodersenet al. [Brodersen et al. 2007] optimizes local volumetric
parameterizations to minimize this possibility.

2.5.2 Displacement Copy-and-Paste

Existing surface-based copy-and-paste techniques involve an interaction similar to dis-
placement stamping, however the displacement Part source is some existing surface
region. For example, Biermann et al. [Biermann et al. 2002], described a tool which
copies detail vectors from one multiresolution surface to another. The basic idea is that
the artist selects the region containing the desired Part, and the tool automatically sep-
arates the relevant detail vectors from the base surface. Then an automatically-computed
local parameterization is used to transfer the detail vectors to the new surface.

This technique was extended to general meshes by Fu et al. [Fu et al. 2004], who
flattened the Part to the plane using conformal planar parameterization [Desbrun et al.
2002] and then encoded each vertex using relative displacement vectors. Note that for
Parts with non-disc topology, this parameterization approach is somewhat of a hack,
and there is no mathematical guarantee that it will properly function.

Local differential vectors can be seen as a generalization of displacement vectors.
Sorkine et al. [Sorkine et al. 2004] describe a differential copy-and-paste technique which
transfers Laplacian vectors to another mesh based on compatible local parameterizations.

2.5.3 Part Fusion

Displacement copy-and-paste techniques are generally based on copying information from
one surface region to another, using local tangent-normal frames to resolve orientation
changes. The main limitation of this approach is that the surface variations over the
regions affects the copied shape. Another type of Part-based interaction has been pro-
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posed by a variety of authors [Kanai et al. 1999; Sorkine et al. 2004; Yu et al. 2004;
Funkhouser et al. 2004; Sharf et al. 2006], which I will call Part fusion.

In this interaction, the Part is an arbitrary mesh with an open boundary loop,
and the fusion involves two steps. First, a hole with a boundary compatible with the
Part boundary is created in the target mesh. This has been done manually, by linearly
projecting the Part boundary onto the target surface, or by way of compatible global
parameterizations. Once the target hole is known, several approaches can be used to
insert the Part. Funkhouser et al. [Funkhouser et al. 2004] perform automatic rigid
alignment and then generate a fillet mesh, while Sharf et al. [Sharf et al. 2006] use a Soft-
ICP algorithm followed by local remeshing of the combined vertex sets. For variational
approaches the user manually orients the Part in 3D, and then the deformation of a
transition region [Sorkine et al. 2004] or the entire surface [Yu et al. 2004] is defined by
constraining the Part boundary to the hole boundary.

Part fusion two advantages over displacement-based methods. First, arbitrary Part
shapes can be represented, not just those representable by displacement or embeddable in
a displaced volume. Second, only the shape of the boundary influences the deformation of
the Part - curvature variations on the interior of the target Part region have no direct
effect on the Part shape. The main drawbacks are that in general the target hole must
be manually created and Part must be manually oriented in 3D. Sharf et al. [Sharf et al.
2006] have tried to reduce the burden of this rigid alignment by automatically snapping
the Part into place when it is interactively dragged near the target hole, but the result
still depends on the global Part orientation.

2.5.4 Part Drag-and-Drop

Displacement Copy-and-Paste and Part Fusion both allow one to re-use geometry from
one model in another, but neither modifies the original model. Part Drag-and-Drop is
a related interaction in which the Part is extracted from the source model, leaving a
smooth surface behind, and then can be interactively dragged to a new position. Suzuki et
al. [Suzuki et al. 2000] described the first Part drag-and-drop tool, in which a simple
mesh feature could be rigidly dragged through the rest of the mesh. The surrounding
surface was locally remeshed at each frame, limiting the drag to relatively flat, smooth
surface regions. Note also that the Part cannot “jump” to another portion of the surface.

A much more advanced form of Part drag-and-drop is possible if the surface model
is procedural. Chan [Chan et al. 1997] described a drag-and-drop interaction which was
be applied to layered spline surface models created using Surface Pasting [Barghiel et al.
1994]. In this interface, the user can select any of the discrete Part nodes and then drag
it to a new position on the base surface, as well as rotate and scale the feature. This
manipulation could be extended to any other Parts that overlapped the selected Part.

2.5.5 Model Fusion

A number of works have addressed the problem of “mixing” a set of independent models.
This is related to Part fusion, however the artist works with entire models instead of
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Parts. Generally the result is computed completely automatically, avoiding the hole-
cutting and rigid alignment steps of Part fusion. To achieve this simplification, most
artistic control is sacrificed.

Kraevoy et al. [Kraevoy and Sheffer 2004] created compatible cross-parameterizations
between small sets of models, allowing the global surfaces to be arbitrarily blended.
An extension to this work [Kraevoy et al. 2007] assumes that a database of cross-
parameterized models is available, then allows an output model to be assembled by
selecting suitable Parts from the database. Hassneret al. [Hassner et al. 2005] tran-
sitioned between two models without requiring a cross-parameterization, by finding an
optimal cut between the two meshes.

2.5.6 Semantic Deformation

As I have mentioned previously, once a Part decomposition is known, one can attempt
to preserve semantic properties of a Part across editing operations. The iWires system
of Gal et al. [Gal et al. 2009] implicitly defines Parts via automatically-detected bound-
ary loop networks, and then preserves rigidity of geometrically similar Parts when one is
deformed. Kraevoy et al. [Kraevoy et al. 2008] attacks a similar problem, trying to pre-
serve the proportions of semantic Parts of a model during scaling operations (although
in this case no discrete Parts are actually defined)

These semantic deformation techniques can be seen as a way to automate the spec-
ification of parametric modeling constraints. However, the “constraint solvers” in these
works are more focused on surface properties than those in parametric modeling tools,
which tend to operate on abstract parameters. These types of surface-based approaches
to preserving geometric relationships may be extendable to more general surfaces, which
would be very useful in a parametric surface modeling tool.

2.6 Conclusion

In this chapter I reviewed a wide range of surface modeling works, with a focus on
procedural representations, Part representations, and Part-based interactions. From
this overview we can draw several conclusions.

First, there is very limited support for procedural representation of surface models.
While various techniques can be re-cast in this role (layered displacement maps, bounded
spatial deformations, etc), the resulting procedural models are extremely rigid, and hence
there are few advantages to be gained from storing the history of changes to the surface
in procedural form. The only explicitly Part-based procedural representations which
have been developed (H-Splines and Surface Pasting) are highly limited in the range of
surfaces they can represent, compared to the complexity of surface models in use today.

Existing works do not consider the general question of how to define a surface Part.
Works which do involve surface Parts generally tailor their definitions to the task at
hand, such as the Part-as-NURBS-patch approach in Surface Pasting. Works which
attempt to detect Parts focus either on segmenting a mesh into discrete regions, or
finding structured geometric entities (embedded edge curves, symmetric regions, etc).



Chapter 2. Background 24

Part-level manipulation of surfaces is a relatively unexplored area. Some recent
works attempt to preserve Part-like structure by way of geometric analysis (curvature,
embedded edges, symmetry, etc) followed by constrained deformation. There has been no
crossover between these works and those that impose actual Part-based representations
on surfaces, such as Surface Pasting or layered displacement maps.

In terms of these truly Part-based procedural representations, current approaches
are all limited to Parts represented via vector displacements. Even moderately complex
Parts cannot be moved to another surface region without the risk of introducing exten-
sive shape distortion. Integrating a Part with greater representational capability into a
truly procedural model would be a clear step forward.

Finally, Part-based interactions have generally been focused on the problem of com-
bining Parts from existing models into a new static model. While this is clearly a highly
useful capability that follows naturally from Part-based representations, in a procedural
model there are many other interaction problems to explore. For example, how should
surface Parts be interactively positioned on a surface, and how can this positioning
be maintained as the underlying surface deforms? Even more fundamentally, how can
overlapping Parts be selected, or even visualized in a coherent way?
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Part-Based Surface Modeling

3.1 Introduction

In recent years, the level of geometric complexity evident in 3D surface models has grown
very rapidly. In modern surface sculpting tools, artists now regularly work with billions
of polygons [Pixologic, Inc. 2011], creating models with incredible levels of geometric
detail. Figure 3.1 shows frames from a timelapse video of an artist sculpting a realistic
human head. This particular model is not extraordinary; models with similar and higher
levels of detail are created on a daily basis, and used to stunning effect in everything
from real-time games to animated films.

After observing the work of these 3D sculptors, it is hard to imagine any 3D surfaces
which would be “too hard” to at least closely approximate in modern sculpting tools. It
is not only possible, but also practical for a designer to model virtually any 3D surface
from scratch. A reasonable question then is, what is it that 3D artists can’t do?

In the introductory chapter I made the case that a major omission from the current
surface modeling state-of-the-art is the surface analog of the structured, Part-based
representation and interaction found in solid modeling. In solid modeling we can discuss
a shape in terms of its Parts, without having to resort to geometric minutia. This is
not the case with surface models, where geometric details like vertices and control points
intrude on any attempts at higher-level discussion.

Figure 3.1: Frames from a timelapse of a moderately detailed multiresolution surface
model being sculpted in the commercial tool ZBrush.

25
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While there are clear theoretical benefits to having such a higher-level description, in
terms of practical utility it is reasonable to ask question such as

• Would artists find any value in Part-based modeling?

• Do artists think of surface models in terms of Parts?

In this chapter, I will attempt to convince the reader that the answer to these two
questions is yes. After a brief overview of the use of surface modeling practices, I will
provide some evidence that artists are already embedding some Part semantics in their
models. Next we will consider some of the clear limitations of these existing surface
representations, by way of comparison to solid modeling. I will then develop my proposed
surface Part which involves a decomposition into a Part domain and shape, and an
on operator which attaches a Part to a surface.

3.2 Current Practices in Surface Modeling

In this section I will attempt to give the reader a sense of how surface modeling techniques
have been put into practice by artists and designers. After a brief discussion of the
evolution of surface modeling tools, I will focus on SubD mesh modeling, as this approach
has become dominant in recent years.

In this discussion I will necessarily be forced to make generalizations about “what
artists do”. I hope the reader will understand that I am at best summarizing what I
have observed. Although I am capable of using many of the standard 3D modeling tools,
I am not a trained or working 3D artist. I also have not carried out any formal interviews,
although because of my public development of 3D modeling software I have had many
interactions with amateur and professional 3D artists (see Chapter 7). I have also spent
extensive amounts of time studying 3D artists and designers in two ways:

Online Forums

I found that many CG artists are very active in online forums and message boards.
There are literally thousands of such forums, in many different languages, generating
vast volumes of public conversation on a daily basis. These conversations range from
helping newcomers master basic techniques, to expert critiques of particular models, to
commentary on current tools and practices used in the CG industry. I found that two
forums in particular were frequented by many highly-regarded artists, and sometimes by
developers of CG software:

• CGTalk (http://forums.cgsociety.org/)

• ZBrush Central (http://www.zbrushcentral.com/)



Chapter 3. Part-Based Surface Modeling 27

Online Tutorial Videos and Speed Modeling

Although highly informative, the content available in online forums is generally limited
to text and images. However, many CG artists who are active in online communities
also create high-quality tutorial videos for their peers. Such videos are easily available on
public video-sharing websites like YouTube (http://www.youtube.com). These tutorial
videos are particularly informative because they can tell us what CG artists find difficult
or frustrating about current tools1.

Another useful category of video that can be found on video sharing sites is speed
modeling. These videos are usually just a screen-capture of a single modeling session,
played back at high speed, so that a complex model may evolve before one’s eyes in a
matter of minutes. Although it can be difficult to see exactly what the artist is doing,
speed modeling videos allow one to glean some insight into how the artist thinks about
the structure of the model, which is virtually impossible to recover in any other way.

3.2.1 A Brief History of Surface Modeling Practices

Surface modeling has a long history in the computer graphics industry - nearly as long
as the history of computing itself. Spline surfaces were already in wide use in early
CAD/CAM systems in the 60s, and references to designing surfaces via control curves
date back to Roman times, where ship ribs were produced from reusable templates [Farin
et al. 2002]. In these early systems NURBS modeling was dominant, and much effort was
devoted to providing artists with tools to manipulate NURBS patches and stitch them
together with high levels of smoothness. High-end Class A surface design tools such as
Alias StudioTools [Autodesk Inc. 2010b] became the standard way in which industrial
design was communicated.

Despite decades of work, NURBS modeling is still difficult for artists, in large part be-
cause of the rigid topological structure needed to maintain smoothness. Modern NURBS
modelers such as Rhino [Robert McNeel & Associates 2010] and Moment of Inspiration
(MOI) [Triple Squid Software Design 2010] have made great strides in interface usability,
but the fundamental difficulties of NURBS modeling remain. Hence, in the late 1990’s,
focus shifted to Subdivision surfaces, which make it easier for the artist to control the
trade-off between topological flexibility and surface smoothness.

While researchers generated many different subdivision strategies, Catmull and Clark’s
1978 method [Catmull and Clark 1978] remains completely dominant in commercial tools.
20 years after they were first proposed, the 1998 Pixar short Geri’s Game demonstrated
that Catmull-Clark subdivision surfaces were a viable replacement for spline surfaces. To-
day virtually every modeling tool targeting entertainment industries supports SubD mod-
eling: Maya [Autodesk Inc. 2010e], Modo [Luxology Inc. 2010], Blender [The Blender
Foundation 2010], 3DSMax [Autodesk Inc. 2010a], and so on. Even some engineering
tools like AutoCad [Autodesk Inc. 2010c] have integrated SubD surfaces.

Like NURBS modelers, SubD modelers are based on a low-resolution control mesh

1For example, after I released the meshmixer software described in Chapter 5, several YouTube videos
were posted demonstrating limitations of the program that individuals found frustrating.
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that the artist manipulates to reshape the smooth surface. However, because subdivision
is iterative, the artist is exposed to the mesh at multiple resolutions. By storing edits
at different resolutions using displacement vectors, a multiresolution surface can be cre-
ated [Zorin et al. 1997]. Multiresolution makes it much easier to manage large models,
and most SubD tools incorporate multiresolution.

Even with multiresolution, though, the artist must still manipulate mesh vertices
using 3D manipulation widgets. This “vertex-pulling” style of modeling is tedious and
error-prone when performed via a 2D projection. A far more artist-friendly interface
is sculpting, where the designer can specify a displacement by dragging a virtual brush
across the 3D surface. Although Maya [Autodesk Inc. 2010e] included sculpting tools for
many years, they did not gain widespread popularity until tools like ZBrush [Pixologic,
Inc. 2011] and MudBox [Autodesk Inc. 2010f] made it possible to interactively sculpt
multiresolution models with tens of millions of triangles (and today, billions). Sculpting
interfaces also support representations that are more topologically flexible but unsuitable
for vertex-pulling interaction. For example, 3D-Coat [Pilgway Inc. 2010] is based on an
octree volumetric representation, and Sculptris [Pettersson 2010] uses a high resolution
adaptive triangle mesh.

Due to the combination of order-of-magnitude increase in geometric detail with more
intuitive interaction, digital sculpting has rapidly gained acceptance among artists, par-
ticularly in film and games where unrestricted creativity is valued more than surface
quality. Recent developments in digital sculpting have focused on ’hard-surface’ brushes
which produce solid-modeling and high-continuity surface effects, suggesting that even
those designers who require Class A surfaces may eventually adopt sculpting tools.

Parallel to the development of interactive 3D modeling tools has been the rapid growth
of 3D shape capture technology. Modern laser scanners can rapidly convert a physical
object into a cloud of billions of 3D points. Researchers have devoted significant effort to
point set surface algorithms and modeling tools. However, standard practice in industry
is to convert scan data to NURBS or SubD representations, usually using manual and
tedious surfacing tools that bear close resemblance to those first proposed in 1996 by
Krishnamurthy and Levoy [Krishnamurthy and Levoy 1996].

The surface models sculpted by artists today have levels of geometric detail that are
much, much higher than what was possible in the 90’s, when most modern 3D modeling
tools and interaction techniques were developed. At the same time, 3D capture technol-
ogy has advanced, to the point where physical objects are routinely converted into triangle
meshes with hundreds of millions of polygons. Dealing with these massive polygon counts
is an active area development in both research and industry. For example, a recent focus
in shape modeling research has been techniques which mimic multiresolution-style in-
teraction on unstructured mesh surfaces [Botsch and Sorkine 2008]. Although powerful,
these methods have yet to make any headway in current interactive surface design tools.

3.2.2 Mesh Modeling and Topology Management

As I have mentioned, virtually all 3D tools in widespread use support subdivision (SubD)
surfaces. As a result, the vast majority of 3D surface modeling that occurs today involves
SubD surfaces. In the following I will briefly review some of the specifics of SubD modeling
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Figure 3.2: A circular feature on a multiresolution surface (a) has “jaggy edges” because
the base mesh (b) is not aligned with the feature. This aliasing effect remains even at
high resolutions (c). A further problem is that when the multiresolution parameterization
is very stretched (d), features aligned with the “grain” of the stretching can still be repre-
sented, but those across it will be highly aliased (e) even at extreme levels of subdivision.

which can inform Part-based surface modeling, and will also be relevant when discussing
practical applications of surface Parts in later chapters.

Multresolution SubD sculpting tools like ZBrush and MudBox provide surface in-
teraction metaphors that are quite intuitive to artists, and one might imagine that such
tools can insulate the artist from managing the 3D polygonal mesh that underlies a SubD
model. Unfortunately, this is not the case. Even at extreme mesh resolutions, SubD sur-
faces are still restricted by the topology of the base mesh. Figure 3.2 demonstrates some
of the problems that can occur when the base mesh edges are not suitably aligned with
the features one wishes to create.

An even more important role for the SubD base mesh is that it is the level at which
the model is animated. If the base mesh topology is poorly structured, parts of the model
will pinch or distort in undesired ways. Hence, CG artists have developed an extensive
theory of how to manage the topology of quad meshes so that the resulting surfaces
animate properly. This general approach is called edge loop modeling, and was initially
documented by Raitt and Minter [Raitt and Minter 1998]. The general principles in this
approach are that loops of edges in the mesh are used to demarcate the boundaries of
structures that will be animated; primarily musculature in character forms. For example,
the sphincter muscles around the eye and mouth should be represented by closed circular
loops in the mesh topology (Figure 3.3a,b).

Based on this general principle, CG artists have developed a rich set of guidelines
and terminology for analyzing quad mesh topology. For example, an irregular quad mesh
vertex of valence 5 is an E-Pole, and valence 3 is an N-Pole. These vertices are critical
because they are locations where edge loops can change direction. Learning how to create
meshes with good edge flow remains a significant hurdle for novice SubD artists, and an
extensive amount of discussion in online forums is devoted to techniques for debugging
edge flow. This largely amounts to tedious manipulation of the mesh to move E-Poles
and N-Poles to more suitable locations (Figure 3.3c,d).

With the rise of high-resolution sculpting, a related workflow gaining in popularity
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Figure 3.3: Much of the effort in SubD modeling is devoted to carefully managing edge
loops so that the surface deforms in a reliable way. Edge loops (a) represent musculature
that will be animated. Standard sets of edge loops (b) simplify the creation of high-quality
faces. Artists spend significant amounts of time doing tedious edge flow debugging (c,d).

is to sculpt an initial high resolution model without worrying about good topology, and
then trace a low-resolution mesh with good topology on top of the detail surface. This
process is sometimes referred to as re-topologizing or re-topo2. Once a low-resolution
mesh with good topology has been created, the multiresolution SubD hierarchy can be
automatically fit (“projected”) to the original sculpt. An example of this type of emerging
workflow is shown in Figure 3.4. Although this example was created by a novice modeler
(the author), similar but more impressive examples can be found in abundance in the
forums mentioned above.

Edge loop modeling and SubD topology management are interesting because they
tell us that artists have a clear sense of Part structure for a given model. Edge loops
generally indicate the boundaries of important surface features. In addition, a major
motivation for the development of edge loops was to allow the artist to manipulate
Parts of the surface independently. As an example, the loops in Figure 3.3a separate
the eye socket from the nose and brow. This allows the eye to be modified and animated
as if it were a separate component. When an artist says that a model has bad edge flow,
often what he or she is really saying is that there are undesirable connections between
surface Parts that the artist wishes to be disjoint.

3.3 Limitations of Flat Surface Models

Model surface models are flat in the sense that they are represented by single 3D graph
of points and edges that defines the entire surface. As a result, whether the surface
being modified is a NURBS, SubD, or raw poly mesh, and whether the interactive tool is
based on vertex-pulling, spatial deformations, or digital sculpting, “deforming a sphere

2Although extensive research has been devoted to automatic quad-mesh generation, the artists I have
talked to do not find the meshes created by these algorithms suitable for practical use. This appears to
be mainly because the generated base meshes do not contain the edge loops necessary to represent the
underlying structures that need to be animated.
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Figure 3.4: An example of a modern surface modeling workflow. I sketched an initial
shape using the Z-Spheres modeling tool of ZBrush, which was then automatically con-
verted to a quad mesh (b). This mesh has too many quads and low quality edge flow, so
I created a new topology by hand (c) to create a “cleaner” mesh (d). I then sculpted a
more complex surface using displacement brushing tools (e). (Note that due to the skill
limitations of the author, the mesh topology is still not particularly suited for this shape)

or plane into a desired shape” is a reasonable high-level description of what a modern
CG artist does. The amazingly complex models created using ZBrush have roughly the
same intrinsic structure as a meshed sphere. The vocabulary we can use to describe such
models is similarly restricted - although an artist may critique the proportion of a hand
or the height of an ear, he or she must ultimately express any change to the surface in
terms of vertices, edges, and faces.

Contrast this with solid modeling tools, which have rich languages for describing the
structure of complex shapes. Even the simplest designs are composed of parts, assemblies,
families, constraints, and so on. Designers are isolated from the tedious details of how a
Boolean operation is implemented - instead they work with higher-level parts, parameters,
and operators.

Because practical Part-based surface modeling tools have yet to be developed, it is
hard to predict what sort of impact they might have on artists’ workflows. However, I
have identified several aspects of Part-based solid modeling that would be of clear value
in surface modeling, but have no analog in modern tools. In this section I will describe
several of these issues.

It is interesting to note that, anecdotally, artists are in some cases completely unaware
of these limitations and of the comparable freedom that is available to engineers armed
with solid modeling tools. It seems that the constraints of current surface modeling
practice are so ingrained that it is hard for 3D designers to imagine what might be
possible if they were lifted.

3.3.1 Component Assembly and Division of Labor

It is standard practice in solid modeling to decompose complex models into assemblies,
which are collections of Parts. Often this assembly relationship can be nested, so that
assemblies contain other assemblies as Parts, and so on. The process of building a
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model can then be structured. After an initial conceptual stage involving a top-down
division of the model into assemblies, each assembly can be created independently, and
then integrated into the final model. In addition to allowing for useful organization and
hiding of complexity, this approach also supports division of labor - each assembly can
be created by a different designer.

In surface modeling, division of labor is very difficult because the entire surface must
be created as single, continuous thin sheet. Different regions of the surface can be modeled
independently, but they must eventually by stitched together. This stitching process is
difficult to automate, and so requires a large amount of tedious manual intervention.

I have yet to observe any artist take this multi-piece approach to modeling a complex
surface from scratch. One area where this is common is in scan data processing, where
different regions of the model are often scanned at different resolutions and must be
combined. In some cases this integration can be automated, but in general artists prefer
a hand-stitched model with high-quality edge topology.

3.3.2 Construction History and Change Management

Many surface modeling tools do support Boolean operations, so it is possible to create
surfaces in Parts to some degree. But even these solid-modeling compositions are not
procedural - Parts are merged to create a new surface, and the inputs are discarded.
The new surface can then be sculpted to ’clean up’ any bad topology or sharp edges. It
is not possible to return to the original Parts, without discarding the edits that followed
the merge operation.

In general, surface representations have minimal support for the tracking of construc-
tion history, which is a sort of generalization of procedural hierarchies. For example, the
Maya modeling tools [Autodesk Inc. 2010e] support construction history on mesh editing
operations, but the modifications are stored using lists of vertex indices. So if the mesh
topology changes, the history becomes meaningless.

A similar issue is change management. Most solid modelers include rich toolsets
for comparing two versions of a model to determine what has changed. This issue is
completely foreign to surface modeling. If the mesh topology is static, one could in
theory highlight changes to any vertices, and otherwise Booleans could potentially be
used. But without a construction history, there is really no way to integrate changes
from two different versions of a model anyway. So this issue does not arise today -
instead, each model is ’owned’ by a particular artist, who is likely to be the only one who
knows how it was constructed.

3.3.3 Structured Manipulation

As mentioned above, one of the reasons to carefully manage edge loops in a SubD mesh
is that it allows for some degree of independence in manipulating the implicit Parts of
the surface. However, even the most carefully-designed edge loop networks are at best an
approximation to the sort of structured manipulation that is possible in solid modeling.
An individual solid part can be modified in isolation and integrated back into the model
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without difficultly. Similarly, an existing atomic part can be extracted and converted
into multiple sub-parts, without affecting the rest of the model.

Even in multiresolution modeling tools, adding a new Part on top of another is
generally only possible by deforming the surface that represents the initial part. As a
result, this underlying part is effectively destroyed. This means that seemingly trivial
tasks, like resizing the sphere in Figure 1.2 without affecting the bump on top of it, are
virtually impossible with modern surface modeling tools. Although the artist may have
a sense of the Part decomposition of the model, the Parts are in fact tightly coupled
and cannot be manipulated in a structured way.

3.3.4 Asset Re-Use

One of the biggest limitations following from the lack of Part-based workflows in surface
modeling is the difficulty of re-using assets. As sculpting tools have made high-quality
shape modeling so much more efficient, it is becoming an increasingly common practice
for artists to create large numbers of design variations for “pre-visualization”. The art
director or client then provides guidance about which parts of which models are desirable,
and the artist refines his or her creations. In these early stages where models may undergo
large changes, artists are usually creating each “refinement” from scratch. With the
limited support for Part-based interaction in today’s tools, it is simply more efficient
for the artist to start over than to attempt to evolve an existing design.

One might argue the reason these technologies have not been developed is a lack of
demand, however there are large and growing marketplaces for many other art assets,
from specialized textures and shaders to full 3D worlds. Video games like Spore allow
the player to combine parametric Parts to create their own character [Eletronic Arts
Inc. 2010], but the Parts must be carefully designed to be interchangeable by the game
creators. There is also a growing interest in custom human models and ’digital doubles’,
where a client can select body parts from a catalog, but again the difficulty of combining
the Parts makes it this a time-consuming and expensive process.

3.3.5 Iterative Design

Surface modeling has very little intrinsic support for iterative design. The underlying
assumption in both surface modeling tools and surface modeling research is that the
artist has a specific “end goal” in mind, and simply needs to be able to specify the
right series of modeling operations to get there. In practice, however, 3D modeling tends
to not actually be very goal-oriented. The designer rarely has a fully-defined target in
mind, instead following an iterative design process where both the current virtual model,
and the desired “goal” model, are repeatedly updated as modeling proceeds. This often
involves a significant amount of trial-and-error to explore the design space.

In surface modeling, trial-and-error is expensive because the designer must carry out
editing operations sequentially, with operation n becoming immutable once operation
n + 1 is initialized. The ubiquitous undo operation supports a limited form of trial-
and-error, but operation n can only be modified by discarding all following operations,
leading to a significant amount of repeated work whenever an error must be corrected.
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A procedural Part-based representation would allow the artist to make a change to
some previous operation, then have the change propagate forward automatically. This
non-sequential editing capability makes design iterations much less costly.

3.4 Defining a Surface Part

In the previous sections I have made a case for the development of a surface-based analog
to the Part-based aspects of solid modeling. However, in solid modeling a Part was
easily defined as a set of points in R3. To develop Part-based surface modeling, we will
first need to figure out what a Part of a surface is.

I emphasize that I will make no attempt to determine what makes a good part. In
an interactive modeling tool, that is ultimately up to the artist. My goal is rather to
provide a framework within which artists have the freedom to break a complex model up
into Parts in the manner they see fit. I will, however, make some observations about
the interaction between potential surface Parts, which do suggest that there are some
Parts that will behave more predictably than others.

There is one type of Part used in surface modeling which I will discuss here to make
clear the distinction between it and the surface Parts that I will focus on. It is often the
case that a complex surface model will actually be composed of multiple surfaces which
are simply positioned in space to intersect, giving the appearance of a single surface when
rendered. For example, the buttons on a shirt may be modeled as separate polygonal
meshes. These buttons are clearly Parts, but even if not technically volumetric B-
reps, they are more closely related to volumetric Parts, in that they are completely
independent of the shirt surface. The problems encountered in defining surface Parts
do not occur with these independent surfaces, and so I will not discuss them any further.

3.4.1 Which kinds of Surfaces?

The term surface is used to refer to a wide variety of concepts. Before diving in our
development of surface Parts, it will be useful to more precisely demarcate the types of
surfaces that we are interested in. Although some of what I will describe can be applied
to the continuous surfaces used in differential geometry [do Carmo 1976], my focus is
the class of representations used in 3D surface modeling. As I discussed in Section 2.3,
there are many such representations, including spline patches, polygonal meshes, point
set surfaces, subdivision surfaces, and manifold surfaces.

Although each of these representations have different properties and capabilities, at
a basic level they share some common structures. In particular, each is ultimately de-
fined by three components: a set of 3D point samples, connectivity information defining
the neighbourhood of each point sample, and a set of basis functions which generate a
continuous surface based on the graph of points and edges. I will refer to this triplet of
structures as the 3D graph which defines the surface.

In much of this thesis I will focus on triangular meshes. Figure 3.5 shows an example
of a triangular mesh. We have a set of point samples called vertices connected by a graph
of edges to form a set of faces, each of which is a triangle. The linear basis functions that
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Figure 3.5: A triangular mesh is defined by a triplet of structures I will call a 3D graph:
a set of vertices, a graph of edges, and linear basis functions that generate triangular faces
from the edges and vertices. If an edge has only one neighbouring face, it is a boundary
edge. A mesh may have multiple boundary loops, which are topologically not identifiable,
but in practice we will treat interior boundary loops differently.

define these triangles are sometimes known as barycentric coordinates. We will assume
that each edge is connected to either one or two triangles. In the literature, such a mesh
is often referred to as being manifold, which roughly means that any small region is
homeomorphic to a disc or half-disc 3. Edges with two triangle neighbours are interior
edges, while edges with only one triangle neighbour are boundary edges.

We will also assume that no vertex is connected to more than two boundary edges. In
this case, the set of boundary edges can be connected up into one or more unique bound-
ary loops. A mesh with a single boundary loop - a mesh with boundary - is homeomorphic
to a disc in the plane. A mesh without any boundary loops, such as a mesh approxi-
mating a sphere, is a mesh without boundary. Depending on the context, a boundary
loop may either treated as a poly-line of connected edges, or simply the ordered list of
boundary vertices.

A mesh with two boundary loops is homeomorphic to a 2D annulus, the region be-
tween two concentric circles. Note, however, that there are two possible assignments of
3D boundary loops to 2D circles. In cases where this situation occurs, we will assume
that extra information is available to uniquely determine which boundary loop is the
outer boundary loop. The remaining one or more loops will be referred to as interior
boundary loops. A similar situation is encountered when removing faces from a mesh
without boundary. This creates a boundary loop, and in the strict topological sense,
we simply now have a mesh with boundary. However, conceptually it will often make
more sense to think of this as an interior boundary loop as well. In general, an interior
boundary loop corresponds to the notion of a hole in surfaces both with and without
boundary, and I will sometimes use this terminology.

Complicating matters is the fact that a surface may have another kind of hole, for
example the hole that forms the handle of a coffee cup. This structure differs in that
no boundary loops are involved. However, another acceptable term for this kind of
topological structure is a handle, so I will reserve the term hole to refer to interior
boundary loops.

3Note that this disc property is generally treated as relative to the mesh connectivity, rather than
with respect to the 3D surface of points contained in the mesh. Hence, a mesh which self-intersects in 3D
is still considered manifold as long as all edges have at most two neighbours in the connectivity graph.
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Figure 3.6: We will encounter two kinds of “holes” - those topologically related to
toroidal structures (left) and those defined by interior boundaries (right). I will refer to
the structure on the left, which does not involve a boundary loop, as a “handle”, and that
on the right as a “hole”.

Note that the above structures - the 3D graph, boundary edges and loops, and so on
- have direct analogs in most other surface representations. For example, meshes with
arbitrary polygonal faces differ only in that they involve more complex basis functions.
Subdivision surfaces and spline patches can be treated as polygonal meshes with higher-
order basis functions. In some cases (ie NURBS patches) this restricts the topology of the
connectivity graph, and depending on the basis functions the surface may not interpolate
the point samples. However, the Part decomposition I will describe in the following can
always be applied at the level of the base 3D graph (the control mesh).

For point set surfaces, the edge graph is generally defined based on spatial proxim-
ity (sometimes with additional criteria), and the notion of a boundary edge does not
exist. Instead we can only attempt to define boundary samples, by examining the local
neighbourhood and trying to determine if it is a full or partial disc. These boundary
samples can then be grouped into boundary strips, or chained into explicit boundary
loops [Bendels et al. 2006].

3.4.2 Which part is the Part?

Recall our introductory example “a sphere with a bump on it” from Figure 1.2. I made
the case that in this shape, we have two parts - a sphere and a bump. If we were to
model this shape using a triangle mesh, though, there will be no sphere and no bump.
We will have only a single genus-0 sheet, topologically equivalent to the sphere. How can
we impose a Part structure on this surface? One way to begin to answer this question
is to ask “what would the surface look like if we removed the bump?”.

It seems clear that we will have to decide that some region of the surface makes up
the bump. But then what? How do we remove it? An obvious answer is to simply
cut the Part region out of the surface, leaving a hole behind. A surface with a hole is
perfectly valid. If we think of these two surface simply as being sets of 3D points, then
we can combine them using the set union operator to recover the sphere-with-bump. An
example of such a decomposition is shown in Figure 3.7a. One problem is immediately
obvious, though - we described this shape as “a sphere with a bump on it”, but our
sphere now has a hole in it.

Consider a similar solid-modeling scenario, such as a sphere with an extrusion added
to it. If we remove the extrusion, we are left with the sphere. In general, if we add
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Figure 3.7: A Part decomposition of “a sphere with a bump on it” could (a) be based
on the set union ∪ of two independent surfaces, however in this case we do not actually
have a sphere, but rather a sphere with a hole in it. To compose surfaces, I propose (b)
an on operator which replaces a region of the sphere with the bump Part.

and then remove a Part from a solid model, the volume remains unchanged - solid
composition operators are reversible. It is highly desirable that our surface Part have a
similar property. Hence, if we remove a surface Part we should be left with the surface
that was underneath, before it was added.

If we take this approach, then after removing the bump from “a sphere with a bump on
it”, we clearly should be left with a sphere. Such a decomposition is shown in Figure 3.7b.
The key difference in this approach is that the bump Part overlaps the sphere.

Note that we can no longer apply the set union operator to combine the bump and
sphere. We must remove the portion of the sphere that is underneath the bump, otherwise
the surface will become topologically invalid. Hence, in Figure 3.7b I have introduced a
new composition operator - the on operator.

3.4.3 The on Operator

The on operator is an integral component of the Part structure I wish to impose on
surface modeling. Essentially, the implementation of the on operator largely determines
how Parts will be represented. Let us consider the A on B operation in more detail.

In the sphere-with-bump example, we found that the bump Part was a surface patch
with a boundary. To output the combined surface, the on operator could take this patch
and the sphere as input, cut a hole in the sphere that aligns with the bump boundary,
and stitch in the bump. But this operator is extremely brittle. If the bump were to
change slightly - for example, via a rigid rotation as I have applied in Figure 3.7b - it
will no longer be possible to merge it with the sphere.

We have run into a problem because the bump is defined as a surface in global
position. A more robust on operator would deform the bump to fit any surface. But this
introduces a new question - where on that surface should the bump be deformed to fit?

When we removed the bump from the sphere, we left a complete sphere behind.
Hence, underneath every Part there lies another surface. I will refer to this region of
surface “underneath” the bump as the domain, for reasons which will shortly become
clear. The union of the domain and the sphere-with-hole will be called the base surface.
Note that we now have two surface regions to consider - the Part surface itself, and the
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Part domain on the base surface. These two regions define the Part shape and Part
location, respectively.

The where of the Part - the location of the domain on the base surface - is largely
orthogonal to the what of the Part (the shape). Hence, if we can define the Part shape
relative to the part domain, for example using a displacement map, then we can move the
Part to another surface simply be redefining the Part domain. Note the dependency
relationship - once we know the Part domain, we can compute its shape. It is possible to
reverse this dependency and define the domain based on the shape, but as I will explain
below, this approach is much less flexible. Hence, I will focus on defining the where and
what problems independently.

3.4.4 A Part as a Manifold Deformation

At a conceptual level, if a surface region U can be robustly defined on the base surface
S, then we can simply deform U into the desired Part shape V . Let us try to formulate
this process mathematically.

We can describe a surface S with or without boundary as the set of points that lie
on it, S = {p}, and our Part domain U is simply a subset of these points U ⊂ S. For
now we will assume that U is topologically equivalent to a disc. This subset can then be
represented by a characteristic or indicator function X on S:

X(p,U) =

{
1 if p ∈ U ,
0 if p /∈ U ,

(3.1)

Given any vector-valued function F (p), we can now generate a displaced version of S in
which only U has been modified:

D(S,U , F ) =
{
D(p,U , F )

}
(3.2)

D(p,U , F ) = p +X(p,U)F (p) where F (p)
∣∣
∂U = 0 (3.3)

Note that V does not explicitly appear in these equations; it can be defined as V =
D(U ,U , F ). This equation is simply a locally-supported deformation of S, but it is clear
that it completely models the change in the surface that has occurred in Figure 3.7b.
Hence, we see that if U and V are both topological discs, the on operator can be written
as a deformation:

V on S = D(S,U , F ) (3.4)

The boundary constraint in Equation 3.3 ensures that no new holes are introduced,
so (V on S) has the same topology as S. Similarly, the topology of both U ⊂ S,
and any other region on S, remain unmodified, and any parameterization of S is also a
parameterization of (V on S).

To see how we can now append another Part let us first rename our variables, so
that the base surface is S0, and we have U1 ⊂ S0 and S1 = (V1 on S0). We can now
append another Part by first defining a domain U2 ⊂ S1 and shape V2, and then applying
Equation 3.4 to generate

S2 = (V2 on S1) = (V2 on (V1 on S0)) (3.5)
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Clearly we can repeat this process to add as many Parts as desired. We can further
simplify the structure by noting that since the deformation-based on operator preserves
topology, we can map U2 back onto the base surface S0. So, at least at a conceptual level,
we can reduce a sequence of topology-preserving Parts to a set of regions on the base
surface, and a displacement function for each region.

Note that in the above equations we have assumed that S is simply a set of points.
However, with a triangle mesh surface representation, S is generated by the 3D graph.
To apply this machinery to a mesh, we limit ourselves to displacing the set of vertices
and hold the connectivity graph fixed. There are several ways to define U . The simplest
is as a set of adjacent faces with disc topology, in this case ∂U is simply the loop of
edges bordering the set of faces. In the interests of expositional efficiency I will continue
with the pseudo-continuous approach, which I find more intuitive and compact. The
special handing necessary to apply the results to mesh-based surface representations will
be pointed out as necessary.

3.4.5 Limitations of the Deformation Form

Equations 3.3 and 3.4 are a concise mathematical model of one approach to defining sur-
face Parts and the on operator. In the following I will refer to this as the Deformation
form of a surface Part. The Deformation form is mathematically robust, making it
easy to analyze and implement. As I discussed in Section 2.3.2, layered displacement
maps correspond precisely to the Deformation form.

Unfortunately, from a practical standpoint the Deformation form has some undesir-
able limitations. Since both U and V are topological discs, the on operator cannot change
the topology of the base surface. So, for example, if we begin with a sphere we can never
produce a coffee cup.

A more immediate limitation is that in many applications it will be the case that we
are given a desired Part shape V a priori. To apply the Deformation form, we must
construct a vector-valued displacement function F that deforms U into V . In practice,
even approximating an arbitrary V with a reasonable level of visual fidelity is a non-trivial
problem, more so since on meshes we have assumed that the edge graph is held constant.

To describe on operators capable of handling more general surface Parts, we will
have to relax the disc-topology and fixed edge-graph restrictions. I will now describe
several of these alternative forms.

3.4.6 Alternative Forms of the on Operator

Although I previously rejected set operations as a viable way to define a surface Part
(Figure 3.7a), it is instructive to consider reformulating this approach as an on operator.
If our Part shape V is a surface with boundary, then we can write this composition as:

V on S = {p ∈ S : X(p,U) = 0} ∪ {p ∈ V} where ∂V = ∂U (3.6)

= (S \ U) ∪ V where ∂V = ∂U (3.7)

We could call this the Assembly form of surface Part composition, where the two
surfaces are combined by literally cutting a hole in one and stitching in the other along a
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shared boundary loop. Note that on a mesh, ∂V = ∂U implies that the boundary edges
are identical. In this case the mesh stitching involves replacing each pair of coincident
boundary vertices with a single vertex, and then rewriting the edge graph.

The Assembly form is completely general - both U and V can have arbitrary topology,
and can even involve disconnected components if we relax the boundary constraint. There
is a clear connection to the set operations used in solid modeling; (S \ U) ∪ V precisely
defines a tree of Boolean set operations, with 3 primitives and 2 operators. However,
in solid modeling, any primitive or operator can be independently manipulated. The
above formulation of the on operator enforces a condition on the boundary of V which
can only be satisfied in very restricted cases. Any perturbation of ∂V or ∂U which is
not coupled with a compatible manipulation of the other nodes will create holes in the
resulting surface. Similarly, if not perfectly aligned, V may intersect (S \ U). I will refer
to both of these results as invalid, a term which I will now attempt to define.

In the paragraphs below I will attempt to re-formulate Equation 3.6 in ways that are
more robust to changes in the Part domain and shape. Ideally, the on operator would
automatically preserve the validity of Part composition, in the same way that regularized
Boolean operators do for CSG. First we need a working definition of a valid surface
modification. Clearly we want the result of (V on S) to respect the mesh properties
we described above, namely that each output edge has no more than two neighbouring
faces, and each vertex connected to either zero or two boundary edges. The other relevant
issue is the number of boundary loops inserted or removed. Say that S has N boundary
loops, U has K, and V has M . Then we will only consider the Part insertion valid if
after replacing U with V , the output surface has at most (N +M −K) boundary loops.
Essentially, this means that the operation can add the holes in V , and consume any holes
in S which lie fully within U (see Figure 3.8).

In the previous section we defined V as a deformation of a disc-shaped U , with fixed
mesh topology. We can clearly rewrite the Deformation form using the assembly notation
above. However, deformations can be applied to non-disc-shaped regions. It is also com-
monplace in mesh manipulation to combine deformation with refinement. By refinement,
I refer to a sequence of incremental changes to the mesh edge graph, such that each step
the topology (number of handles and holes) of the 3D surface defined by the graph is
equivalent. For example, edge rotations replace two triangles with two triangles, edge
splits replace two triangles with four triangles by inserting a vertex into an edge, and
edge collapses remove two triangles and one vertex. I will refer to the combination of
deformation and refinement applied to a connected component as an Edit.

Given an Edit E, we can write V = E(U), and then express the Edit form of on as:

V on S = (S \ U) ∪ E(U) where E(p)
∣∣
∂U = p (3.8)

Note that this form now has three operators (\,∪, and the unary E) and two primitives,
however U has multiple parents and hence the result is no longer strictly a tree. Nev-
ertheless, the Edit form is more flexible than the Deformation form, while being more
robust than the Assembly form. As long as the boundary condition is preserved, we
can arbitrarily and independently modify E and U without producing an invalid surface.
Note that to apply the Edit form to a mesh, we also must also constrain the refinements
of E such that they do not modify the boundary loop ∂U .
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The Edit form is quite general, and in my Surface Tree implementation (Chapter 6)
most of the procedural Part nodes will be based on it. However, in the Edit form V and
U must still be topologically equivalent. Similarly, like the Deformation form, in practice
it is very difficult to construct an E which generates a given Part shape. To support an
initial Part shape V we define the Insertion form :

V on S = (S \ U) ∪ E(V) where E(V)
∣∣
∂V = ∂U (3.9)

Note that E is applied to V rather than U . The interior of U is not deformed, but rather
discarded. Hence, on a mesh we perform edge graph replacement, rather than refinement.
As a result, the topology of V does not have to be the same as U . Similarly, U has more
flexibility, and can even include multiple connected components, if V is to be attached
along multiple boundary loops (for example to create the handle of a coffee mug). Such
an operation will be used to create topological handles in Chapter 6. Another advantage
of the Insertion form over the previous alternatives is that it is much easier to formulate
E operations that simply enforce the boundary constraint in a generic way. I will describe
precisely such an operation in Chapter 5.

Note that in Equation 3.9 we again have a tree-like structure, as U only appears in
a single node. However, in all of the above formulations, we have additional boundary
conditions that must be enforced, which implicitly couple U and V . So in fact none of the
above structures can be represented by a fully independent hierarchy of nodes. As I will
discuss further in Chapter 6, this coupling appears to be an inherent property of surface
Parts, and a fundamental difference when compared to volumetric compositions.

3.4.7 Valid Combinations of U and V
In the previous sections I have described three different forms of the on operator, and
associated restrictions on the Part domain U and shape V . The table below summarizes
the capabilities of these alternatives:

on form Topology of U Topology of V Edge Graph Change
Deformation disc disc none
Edit connected component same as U refinement
Insertion multiple components connected component replacement

Figure 3.8 displays the different possible combinations of domain and shape topology in
graphical form, along with the versions of the on operator that can support the pairing.
From this table it is clear that the Deformation form is the most limited. The Edit form
is slightly more capable, although still quite restricted. This is in part because I limited
refinements to those that do not change the surface topology. If we allow single edges or
faces to be added, it would then be possible to place a disc over a hole. The Insertion
form is most general, supporting all the different topological combinations.

One shared limitation of the presented forms of the on operator is that they assume
U to be a subset of S. This is not strictly necessary. If we allow F (p) to be non-zero
where ∂U = ∂S, then we can grow a boundary of S outwards. Figure 3.9 shows how
we can use a Deformation operation to create the necessary surface region to contain a
desired Ω.
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Figure 3.8: Valid combinations of Part domain U (rows) and shape V (columns) for
the (D)eformation, (E)dit, and (I)nsertion forms of the on operator.

Figure 3.9: The Part domain U must lie within the base surface, so the cases on the left
cannot be directly handled. Deformation operations that expand outward from the base
surface boundary can “make space” for the desired Ω.

More problematic cases are shown in Figure 3.10a,b. Here the desired Part domain
covers two disconnected portions of boundary loop. These cannot be joined by a defor-
mation or E, as doing so requires modifications to the edge graph which change surface
topology. Note that it is possible to join the two disconnected regions of U that intersect
with S using a tube, however this will also increase the genus of the output surface.

Figure 3.10c is another interesting case. One way to look at this region is simply as
a cylinder, in which case we can apply an Edit or Insertion Part. However, another
potential operation we might wish to consider is shown in d-f, where we “break” the
handle and reduce the genus of the surface by one. To do so we must either leave a
hole on the remaining side of the handle, or allow a Part composed of two disconnected
components. In the preceding text I have declared both of these invalid.

Figure 3.10: Part domains U that fall outside the bounds of what I have described as
permissible. Topology-changing operations are required to create domains (a) and (b). Al-
though (c) could be a cylinder, we may also wish to “break” the handle. Representing this
topological modification as shown in (d-f) is not possible within my current framework.
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3.4.8 Desirable Properties for the Representation of U
So far we have considered the different approaches to Part composition largely as ab-
stractions. In each case we essentially have the same two components - the Part domain
U and the Part shape V - But we were unconcerned with how to practically represent
these elements. However, to implement Part-based tools we must now turn to these
issues. The definition of these two components is also where most existing works vary.
So for the remainder of this chapter I will focus on the location and shape independently.
Before continuing I will briefly describe some properties that we can use to evaluate the
capabilities of different representations for U and V .

To simplify the discussion, we again assume that our arbitrary region U ⊂ S is a
topological disc, so ∂U is a single boundary loop. Clearly if S is static, there are a
multitude of ways to describe a fixed region. The challenge is to define U in such a
way that it can be recomputed if S is modified. This modification could be a simple
deformation, or could involve replacing S with an entirely different surface. The general
problem to be solved is a mapping of U from one surface to another. I will broadly
classify these mapping problems into four different types, of increasing difficulty.

Deformation A deformation is perhaps best thought of as a functional mapping D :
S → S ′, where S ′ is a differently-shaped surface. If D is a mesh deformation that does
not change the mesh topology, then clearly D can be used to map U to S ′.

Resampling As discussed above, surface representations are based on a 3D graph,
usually in the form of a mesh topology. Many procedural operations will dynamically
generate this topology, so when S changes it may also be resampled, meaning that the
number and location of the samples and graph edges will change. Clearly it would be
desirable if U were as invariant to resampling as possible.

Surface Transport In an interactive tool, it is desirable to be able to move U to a
different location on the current surface. The simplest way to accomplish this is to slide
U a very short distance along S, which can be expressed as allowing U to flow through a
surface vector field for a small timestep. I will refer to this problem as surface transport.

Generalized Transport If Surface Transport can be solved, repeated application can
be used to drag U along continuous paths. A harder problem is to move U discontinuously,
such as to a disjoint part of S or another surface entirely, where no deformation D is
explicitly given. This is a key capability for supporting arbitrary procedural composition
of Parts. I will call this problem generalized transport.

As we will see below, there are some trivial solutions to these problems in certain cases.
For example, if a parameterization of S is available, we can define U in parameter space,
and easily move it to any other parameter space. However, unless S is developable, any
global parameterization will contain unintuitive and often extreme distortion, which will
be transferred to U if transport operations are applied in parameter-space. Similarly,
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when a global parameterization is recomputed it is entirely possible that the parameter-
space coordinates will “shift” across the surface, which would then cause U to move. This
is also undesirable. Hence, we must consider the following somewhat aesthetic property
of any approach to solving the problems listed above:

U-Rigidity How well does the method preserve the affine properties of U on the sur-
face? By affine properties, I mean location, orientation, and scale of U relative to S.
Closely related is how well the method preserves the intrinsic shape properties of U , such
as the local curvature of ∂U .

Essentially, the representation of U should be as independent of the surface geometry
- current 3D configuration, mesh topology, and so on - as possible, while also making it
as simple as possible to solve the four mapping problems.

3.4.9 Desirable Properties for the Representation of V
We have defined the Part shape as some modification E applied to either the Part
region U or the Part shape V . In some sense, this is the easier problem - most of the
major approaches to defining a surface deformation can be trivially adapted to formulate
a suitable E. We will see, however, that most of these approaches fail to preserve the
aesthetic properties of the initial Part shape if U changes. Similarly, some approaches
which can more robustly represent shape can only do so for limited classes of shapes
(displacement maps are a prime example).

E-Capacity As noted, some approaches to defining a 3D surface shape have limited
their representational capability. We would prefer an E that can handle as broad a range
of Part shapes as possible. I will refer to this property as the capacity of E.

E-Rigidity If V is the initial part shape, how well does E preserve the shape properties
of V as U varies? Of interest are both mathematical rigidity - for example the deviation
in local curvature across V - and how rigid the part “feels” to the artist.

3.5 Existing Approaches to Implementing Parts

Many existing works in computer graphics have either implicitly or explicitly defined
Parts that can be explained in terms of my the domain/shape decomposition. In fact,
this decomposition makes clear the commonalities and differences between many meth-
ods. I will now briefly review the different alternatives.

3.5.1 Part Domain

I have identified five different ways of describing the part domain. Four largely follow my
approach of defining the domain independently of the shape, and one takes the inverse
approach of determining the domain from a rigid surface patch in global position.
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Spatial Volume

An region on a surface can be defined by the intersection of the surface with a bounded
3D volume. Bounded spatial deformations such as Wires [Singh and Fiume 1998] take
exactly this approach, and Lewiset al. [Lewis and Jones 2004] created complex procedural
models using deformations of spatially-bounded mesh regions. In purely technical terms,
this is an excellent representation - since it is not tied to the surface, even Generalized
Transport is trivial. However, this same independence from the surface means that
the shape of the surface domain - U -Rigidity - is likely to be completely lost under all
mappings except Resampling.

Projection

If we are given a Part shape as a rigid surface-with-boundary oriented in 3D, then one
way to find the Part domain is to project the boundary of the part onto the surface. A
simple type of projection is intersect a ray through each boundary point with the target
surface. This sort of projection has been used in several “cut-and-paste” tools [Sorkine
et al. 2004; Yu et al. 2004]. A related variant is to actually intersect the part with
the target surface. Issues such as some rays missing the surface or the intersection not
forming a closed loop can be handled with minimal-cut post-processing [Hassner et al.
2005]. As with the spatial volume, though, projection-based region definition involves
a geometrically independent oriented 3D shape which is in fact tightly coupled in an
aesthetic sense, making it extremely difficult to maintain U -Rigidity.

Explicit Region on Surface

Perhaps the most obvious way to define a region on a discrete surface such as a polygonal
mesh is as a list of adjacent faces or vertices. A straightforward generalization is to store
the region boundary ∂U as a poly-line embedded in the surface, for example as vertices
stored in mesh faces using barycentric coordinates. This approach has been put into
use in some mesh cut-and-paste works, where the artist must define a suitable pasting
boundary on the target surface [Yu et al. 2004; Funkhouser et al. 2004; Sharf et al. 2006;
Huang et al. 2007].

The region-on-surface representation is appealing in its simplicity. However, because
the region must be embedded in the 3D graph of the current surface representation, it
is completely dependent on the current graph. Deformation can be trivially handled if
the Part domain can be permitted to deform with the mesh. This may be artistically
acceptable, but if not, there is no clear way to improve U -Rigidity. Resampling can
be accomplished by projecting the region boundary onto the new surface, and Surface
Transport is possible by advecting the part boundary along the mesh, though it can be
difficult to preserve U -Rigidity [Pedersen 1995; Suzuki et al. 2000].

The key drawback of storing an explicit surface region is that there is no straight-
forward way to transfer a subset of one mesh topology to another completely different
surface. Hence, all existing techniques which have performed Generalized Transport op-
erations on these surface region representations have done so by first converting to a
representation based on a region in a parameterization.
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Figure 3.11: In (a), a displacement “bump” is layered onto a planar NURBS patch by
mapping displacements using the intrinsic NURBS parameterization. This parameteriza-
tion is stretched as the planar patch is deformed (b), resulting in a deformed displacement
(c). Dynamically computing a new local parameterization (d) reduces distortion in the
layered displacement (e).

Region in Parameterization

If S has a global parameterization, ie a mapping P : S → R2, then U can be defined as
a map from a 2D domain in this parameterization, or U = P(U2D). This representation
is technically ideal, in that each mapping problem can be solved simply by copying 2D
regions from one parameterization to another. However, in practice P inevitably involves
distortion [Floater and Hormann 2005], meaning that regions in parameter space are
deformed when they are mapped to the surface. So if we follow the strategy above,
copying a region from one parameterization to another will likely result in very poor
U -Rigidity4.

Hence, like in the case of spatial volumes, the parametric-region representation ap-
pears to be independent but in fact is closely coupled with the relationship between
the parameterization and the surface. This relationship is most problematic when P is
determined a priori for the entire surface. For example, in Surface Pasting the natural
planar parameterization of the base NURBS surface is used to store the domains of over-
lapping Parts [Barghiel et al. 1994]. This has unintuitive effects on the Part shapes,
particularly during animation [Tsang and Mann 1998]. See Figure 3.11 for an example.

U -Rigidity can be greatly improved by dynamically computing a local parameteriza-
tion for the Part domain. This strategy has been used by many works that attempt
to transfer Part-like geometric information from one surface to another [Pedersen 1995;
Kanai et al. 1999; Biermann et al. 2002; Fu et al. 2004; Sorkine et al. 2004; Brodersen
et al. 2007]. Note, however, that the region over which to locally parameterize must still
be determined using one of the above methods. One exception is Biermannet al. [Bier-
mann et al. 2002], where the parameterization region was defined by a geodesic polygon
around a single point on the surface. This further decomposition of the Part domain
into a single point and a function on the surface provides significant advantages, and I

4A potential strategy here would be to optimize U in parameter space to preserve its 3D shape, but
this has yet to be explored.
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will adopt a similar approach.

Region in Manifold

An extension of the region-in-parameterization approach is to impose a manifold struc-
ture onto the surface. A manifold provides a continuous global parameterization con-
structed out of a set of overlapping charts. Transition functions connect the charts, so
one can move transparently from one chart to any overlapping neighbours.

Ideally, the charts individually have low distortion, and so Part domains can be
stored in the charts without penalizing U -Rigidity. However, existing manifold imple-
mentations for spheres [Grimm 2005] and polygonal meshes [Grimm and Hughes 1995;
Ying and Zorin 2004] do not have isometric charts, so any embedded region will still
inherit significant distortion. However, the manifold formalism is very powerful and I
will base my approach on it.

3.5.2 Part Shape

Although vastly more work has been done on defining 3D shape than on describing
a surface region, I believe the alternatives can be adequately characterized by three
categories.

Spatial Deformation

Spatial deformations can be used to deform any Part domain into virtually any shape, so
the E-Capacity of this approach to shape description is very high. The standard approach
of applying a deformation to each vertex independently does preclude any changes to the
mesh edge graph, and likewise to surface topology. A larger drawback, though, is that
the shape of the Part is again tightly coupled to a particular Part domain. Hence,
E-Rigidity is very limited - transferring a deformation from one surface to another will
generally result in a meaningless shape.

Relative Displacements

In contrast to spatial deformations, shapes defined via relative displacements can be
easily transferred to another Part domain. One issue is that E-Rigidity may suffer if
the surface curvature significantly varies. It is not difficult to construct scenarios where
a Part that protrudes significantly from the surface will self-intersect (see [Brodersen
et al. 2007] for one approach to reducing the normal distortion in displacement mapping).

The main limitation of displacement representations is that they have very restricted
E-Capacity. The part shape must be representable by a vector function over a domain.
In particular, this means that the Part cannot have topological handles. Geometric
texture [Porumbescu et al. 2005; Elber 2005; Brodersen et al. 2007] circumvents this by
embedding an arbitrary surface in a simple rectangular displacement volume, however the
part surface must be fully contained in this volume. Another issue is resolution - if we
copy a displacement from one surface to another, the target needs to have a sufficiently-
dense tessellation to reproduce the sharp edges of fine details in the displacement map.
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Surface Pasting [Barghiel et al. 1994] avoided this problem by trimming the target surface
and directly inserting the pasted spline geometry, although at the cost of actual geometric
continuity.

Differential Representation

Recent work in variational shape modeling has demonstrated the power of differential
representations of meshed surfaces. In this case each mesh vertex is replaced with some
higher-order differential information about its local surface derivatives. Once bound-
ary constraints are fixed, the internal surface can be reconstructed from this differen-
tial information using global energy minimizations. This approach is very powerful, as
configurable energy functions allow us to control the trade-off between E-Rigidity and
computational efficiency. The internal shape is completely defined by the boundary and
a fixed mesh topology on the interior, so Parts with arbitrary genus can be represented.

The most efficient approaches are based on linear variational methods, meaning that
the energies are quadratic. This can limit the ability of the methods to handle some
kinds of changes in U . For example, differential Laplacian vectors are defined in global
coordinates, and must somehow be rotated when the orientation of the Part domain
changes [Sorkine et al. 2004]. Since the Part interior is essentially defined as a smooth
interpolant of the boundary values, interior boundaries (holes) require special handling.
Despite these issues, differential approaches present the most compelling option for de-
scribing Part shape. Hence, I will adopt a differential approach, although one that does
not depend on variational minimization.

3.6 Manifold-Based Part Representation

In the preceding sections I have considered a variety of different approaches to imple-
menting a surface Part. There are two problems to solve: where the part is on the
surface (a domain), and what the part looks like (a shape). I will now describe a new ap-
proach to implementing Parts which draws from these existing methods, but is capable
of supporting an arbitrary procedural hierarchy.

3.6.1 Where: Parameterized Geodesic Disc

Grimm [Grimm 2005] presents a compelling approach to representing an region U on a
surface, namely by embedding it in the atlas of a manifold. The advantage of the manifold
embedding over a standard global parameterization is that, in theory, the manifold charts
can be nearly isometric (ie undistorted). Hence, the mapping of U to the surface will
be as rigid as possible. But two problems arise. First, an actual implementation of a
nearly-isometric manifold has yet to be developed - existing manifold techniques may
have extensive distortion in the charts [Grimm and Hughes 1995; Ying and Zorin 2004;
Grimm and Zorin 2006; Gu et al. 2006; Siqueira et al. 2009]. Even if the initial manifold
has low distortion, new charts would need to be inserted to maintain this low distortion
as the manifold is modified by editing operations. We would then need to map U to this
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Figure 3.12: An region (a) embedded in one manifold, which overlaps several charts, is
non-trivial to map onto another manifold with a different set of charts, both in 3D and in
the parameter space. In contrast, a single point (b) embedded in a manifold can trivially
be mapped to a point in another manifold, either via 2D or 3D correspondences.

new atlas (Figure 3.12), a problem which is completely unaddressed by existing work,
and clearly very difficult.

Biermann’s multiresolution pasting [Biermann et al. 2002] suggests a way to sidestep
the domain encoding issue, by encoding U relative to a single point. Then only this point
need be mapped between atlases, which is a much easier problem (Figure 3.12). And
because the U is computed directly on the surface, we need not worry about distortion
in the manifold. In fact, we will see in chapter 6 that we do not even need a rigorously-
defined manifold atlas.

The question remains, how to encode U relative to a point? Biermann’s scheme
involved encoding a source U as a geodesic polygon, which was reconstituted on the
target surface by tracing geodesics. I propose a simpler alternative, namely to embed
U within a parameterized geodesic disc that contains it. Then to reconstruct U at a
point on some other surface, we simply compute another parameterized geodesic disc
(Figure 3.13). The advantage of this approach is that it introduces a further level of
abstraction - once the geodesic is known, any Part can be inserted into it. We have
hence reduced the part definition from (U ,E), where U is a surface region, to (u,E),
where u is a 2D region. To find the 3D surface region, we evaluate U = P(u). One
caveat about this approach that should be mentioned is that as U is now a function of
a 2D region, certain Part domains can no longer be handled. In particular, the bottom
rows of Figure 3.8, where the domain contains a topological handle or is cylindrical, will
not be supported. Note, however, that the domain can still contain holes.

As I have mentioned several times, parameterization algorithms can introduce unex-
pected distortion. A key driver for this geodesic-disc decomposition is the local parame-
terization algorithm I will present in Chapter 4. This algorithm efficiently parameterizes
a geodesic disc using normal coordinates, a type of intrinsic local coordinate system on
surfaces which has a variety of very desirable properties for part-based interaction.
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Figure 3.13: A region on an initial surface can be embedded within a parameterized
geodesic disc. Then only the center point of this geodesic disc needs to be embedded in
the atlas of the underlying surface manifold, and can be mapped to a different manifold
without difficulty. Then a new parameterized geodesic disc is computed, and the part
domain is mapped from its parameter space to the new surface.

3.6.2 What: Geometric Differential Deformation

I have described a conceptually sound approach to representing a Part domain, which
can be easily mapped to any surface. Once the domain is known, we can easily support a
variety of Part shape representation strategies. Displacement-map representations are
straightforward, and I will consider procedural displacement maps in Chapter 6.

However, it would be desirable to avoid the E-Capacity limitations of displacement
maps. One way to do this is to encode the Part shape V relative to its 3D boundary
loop ∂V . This is easily possible with differential representations, which can deconstruct
a surface-with-boundary into a set of abstract differential coordinates at each internal
point, and a set of fixed boundary constraints. We can then take ∂U to be the de-
sired boundary of the Part on the target surface, and use a deformation to enforce the
boundary constraint ∂V = ∂U .

A further advantage of the boundary-based approach is that the Part shape is largely
isolated from any internal surface variations within U - only the boundary matters.
One difficulty, though, is that variational differential techniques have some practical
limitations. Hence, in Chapter 5 I will describe a novel geometric differential deformation,
which is designed specifically to solve the problem posed here in a robust and efficient
manner.

3.7 Towards A Theory of Surface Parts

In the preceding sections my goal has been to present my construction of surface Parts,
and the associated on operator, as concisely as possible. An interesting question, though,
is how these components fit into the larger universe of Part-based surface editing. For
example, there may be types of surface operations that on does not adequately represent.
Or perhaps there are surface Parts that would be better described by something other
than replacement of a fixed region with a new shape.

The remainder of this chapter is meant to document some of the initial explorations
I have made in these directions, which will perhaps inform future work on Part-based
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surface modeling.

3.7.1 on is not Symmetric

Throughout this chapter I have focused on the question of removing the bump Part from
the sphere Part. But what if we removed the sphere instead? Remember that we have
defined the bump Part as a region of the sphere-with-bump surface. Thus the sphere
Part could be described as the complement of this region. If we follow the procedure I
have developed, then removing this other Part will result in a sphere-with-hole surface,
and leave some surface on the “back-side” of the bump.

This symmetry is appealing, but the results are nonsensical - we again have lost our
sphere, and the bump has become a solid shape that would be difficult to now compose
with some other surface. Hence, we must accept that there is an ordering to surface
Parts. This ordering is even implied in the textual description I have used - the bump
is on the sphere.

In general, a Part must be a surface patch with boundary to be placed on another
surface. A surface without a boundary, such as a sphere, cannot be placed on another
surface. Hence, if A on B is the composition operator between two Parts, then only B
can be a surface without boundary. Note, however, that both A and B can be surfaces
with boundaries.

3.7.2 Other Part Operators

In this thesis I will focus on the on operator. An interesting question is whether there
are other Part composition operators we might wish to consider. The on operator is
highly general, and can express virtually any local operation that involves attaching one
surface patch to another. So, unlike in the solid modeling case, on can be used to both
add and remove (apparent) volume from a surface. Similarly, inserting a boundary loop
into a surface can be expressed as an on operation.

One assumption I have made for simplicity is that the on operator involves a disc-
shaped region U . This is not strictly necessary - most of the equations in Section 3.4 are
still applicable when U involves disconnected components. So, for example, attaching a
tube at two locations to create a topological handle can be written as an on operation
(as will be done in Chapter 6).

One requirement of the A on B operation is that A be an surface patch with a bound-
ary, leading to an asymmetry and imposing an ordering on the compositions. However,
one can easily imagine examples in which we wish to combine two surfaces without
boundaries. As such surfaces are technically volumes, we could resort to solid modeling
compositions here, but there are advantages to limiting ourselves to surface-based oper-
ations, which can explicitly preserve surface-specific properties like parameterizations.

In topology, the composition of two surfaces is known as the connected sum, and is
written A # B. The connected sum involves cutting compatible holes in both A and B
and joining the two surfaces along the hole boundaries. This operation, which we could
perhaps call And, could be re-cast as a pair of on operations - one to insert a boundary
loop in A, and then the second to attach this newly-created surface-with-boundary to B.
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However, there is a significant conceptual difference to the A And B operation, namely
that it is symmetric.

Although I will not discuss And any further, there have been some works which do
in fact implement And compositions for surfaces, such as Hassner et al. [Hassner et al.
2005]. In this work, the composition result is derived from the global position of the
two input surfaces, and hence the result is very much like a Boolean composition. One
question is whether And can be generalized to provide more flexibility, for example to
incorporate the sort of deformations we integrated into on. Further exploration of And,
and perhaps other Part-based composition operators, are interesting potential directions
for future work.

3.7.3 What is a Part?

I motivated my development of surface Parts with the simple example of “a sphere with
a bump on it”, a statement which I decomposed into two objects - a sphere and a bump
- and an on relationship between them. From this decomposition I have derived a sort
of grammar for surface Parts, albeit one with a very small vocabulary. A reasonable
question to ask is whether or not I would have arrived at a different result if I had begun
with a different statement. Or, in other words, how dependent on language is my notion
of Parts?

One assumption I have made is that the reader will parse “a sphere with a bump
on it” into the same two Parts that I have. One might argue that this is reasonable,
sphere and bump being the two nouns in the statement. But the entire statement itself
is also a sort of noun, in that it refers to an object. It is entirely possible that one who
is less mathematically inclined might describe my object as “a ball with a bump on it”,
or even “a bumpy ball”. But these two statements differ significantly in their linguistic
structure, in that the latter has only one noun, and no “on”-like word that represents the
composition. Of course this will not surprise any reader who has studied philosophy of
language, linguistics, or natural-language processing. It is well-known that there is not a
unique mapping between objects and words. But the question remains: if I had started
with “a bumpy ball”, would I still have arrived at A on B?

I argue that in fact my development does not depend in any way on the linguistic
parsing of “a sphere with a bump on it”. Recall that this statement is meant to be a
description of a 3D model. My formulation is meant to capture the part semantics of the
shape, not the linguistic part semantics of the statement describing the shape. I have
taken advantage of the fact that this model can be described by a relatively unambiguous
sentence, but this is simply an expositional convenience. To see this, consider that “a
surface with a local deformation” is a completely reasonable alternative, and can be
encoded using the same A on B operation.

One might argue that on seems to imply a spatial relationship that is not inherent
in “a surface with a deformation”. But again, the use of “on” follows from the need to
express an idea concisely in words. This is not the spatial “on” of “a ball on a table”
that one might use in a natural language description of a 3D scene [Coyne and Sproat
2001], but rather a token indicating the mathematical constructs described above. It
would perhaps be more precise to call the operator “into”, because as we move forward
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we will ultimately be inserting one manifold into another. And in strict mathematically
terminology, the operation that on expresses is a fiber sum, related to the connected
sum I described above. I will continue to use “on”, though, because it agrees with my
intuition about how surface Parts are most often used.

As I stated at the beginning of this section, I am not concerned with what may or may
not be the “right” part decomposition of a surface. I would go even further and claim
that there is no intrinsically “wrong” part decomposition. Rather, my Parts and on
operator are a framework in which one can represent changes to surfaces in a structured
way. Within this framework, the answer to the question “what is a part” is simply that
a Part is any change to a surface, and on is the means for applying that change to
another surface.

3.8 Conclusions

In this chapter I explored current practices in 3D surface modeling, finding that modern
tools allow artists to efficiently create incredibly detailed 3D surface models. Looking
deeper, I found that artists already embed some notions of surface Parts in their mod-
els, in the form of structured sets of quad edge loops. I then illustrated some of the
limitations of the current state-of-the-art in surface modeling, by way of comparison to
the capabilities of procedural solid modeling.

These findings provide a reasonably strong motivation for the development of a pro-
cedural Part-based surface representation. However, to date I have found no clear
definition of a surface Part in the literature. I took the first step towards this goal,
by considering several possibilities and selecting an approach that segments the Part
into an on-surface domain and a 3D shape, with a boundary loop connecting the two.
This decomposition naturally led us to the on operator, which attaches a Part to an-
other surface. I then considered some properties which we would like our Partdomain
and shape representations to have, considered existing approaches in this respect, and
then synthesized a new technique based on a parameterized geodesic disc and a surface
deformation. This Part is specifically designed to support generalized transport, the
capability to move a Part from one surface to any other without requiring a known
deformation.



Chapter 4

Representing Regions on Surfaces

Some material in this chapter is derived from the article “Interactive Decal Compositing
with Discrete Exponential Maps” authored by Ryan Schmidt, Cindy Grimm, and Brian
Wyvill [Schmidt et al. 2006]. The text and images reproduced here are used with permis-
sion from my co-authors.

4.1 Introduction

In the previous chapter I showed that a region on a surface can be efficiently represented
by embedding it inside a parameterized geodesic disc. As the geodesic disc is defined
by a single 3D point, it can be efficiently mapped between parameterizations without
inheriting any of the distortions inherent in parameterizations.

The next question to answer is, how should we parameterize this geodesic disc? Global
planar parameterization methods [Sheffer et al. 2006] provide a wide range of options,
however as I will later discuss, the global optimizations used in most of these techniques
have some drawbacks. Looking to differential geometry, we find that geodesic discs have a
natural parameterization known as geodesic radial coordinates, an “on-surface” version
of the well-known 2D radial coordinates which exist in the tangent space, a linear 2D
space centered at point p on a surface. Within this space, we can convert the radial
coordinates to Euclidean normal coordinates.

In this chapter I will provide a brief development of normal coordinates. After re-
viewing existing techniques which can compute normal coordinates, I will present the
Discrete Exponential Map (DEM), a new algorithm which efficiently computes normal
coordinates using Dijkstra’s algorithm. The basic version of this algorithm [Schmidt et al.
2006] has some instabilities, so I will present some simple techniques to significantly im-
prove robustness. I will then evaluate the DEM with respect to a variety of geometric
considerations, like sampling and geodesic discontinuities, followed by an empirical ex-
ploration of error and convergence and a comparison to global mesh parameterization
methods. I will then present my first Part-based interactive tool, a simple drag-and-
drop texture compositing interface. In this context, textures are simply an alternative
way to represent the Parts of a surface which do not require discrete geometry. However,
the problem is simplified compared to procedural geometric Parts because all texture

54
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Parts lie on a single shared surface.

4.2 Normal Coordinates

Looking to differential geometry [do Carmo 1976], we find that on a suitably-smooth
continuous surface S ∈ R3, a local 2D coordinate system (x1, x2) can be defined around
any point p ∈ S using the log map. This map takes nearby points q into the tangent
space Tp, a 2D vector space centered at p. Assuming S is a Riemannian manifold, these
coordinates in the tangent space are Riemann normal coordinates.

The log map can be defined via curves on the surface. For any neighbour q within
a sufficiently small neighbourhood around p, there is a geodesic curve γ which begins
at p and passes through q. At p, the tangent vector γ′(p) = v is also tangent to M ,
hence v ∈ Tp. As Tp is a vector space, we can assign a basis (e1, e2) and compute
geodesic polar coordinates (rg, θg), where rg is the arc-length from γ(p) to γ(q), and θg
is the angle between e1 and v. We can then define the normal coordinates (u1, u2) =
(rg cos θg, rg sin θg). We will denote the normal coordinate of q in the tangent space at p
as Tpq, and write Tpq = logp(q). We will also refer to the inverse of the log map, the
exponential map, which takes points Tpq to q ∈ S, hence q = expp(Tpq).

Conceptually, then, the normal coordinates at q are defined by the shortest curve
“in the surface” which shoots outwards from p (Figure 4.2a). The inverse function
theorem ensures that for any differentiable point p, logp is defined and invertible in
some neighbourhood around p, meaning that each q in that neighbourhood has a unique
normal coordinate [do Carmo 1976]. Furthermore, on a smooth manifold the Hopf-
Rinow theorem [Cheeger and Ebin 1975] states that logp is guaranteed to be defined
on the entire surface. However, the map is still only diffeomorphic within a local star-
shaped neighbourhood in Tp, which is bounded either by the surface boundaries or the
cut locus [do Carmo 1976; Pennec 2006].

At points on the cut locus two or more minimizing geodesics intersect, hence the
normal coordinate depends on which geodesic path is taken and the log map is no longer
unique. Rustamov [Rustamov 2010; Kendall 1990] states that if the radius of a geodesic
disc satisfies 2r

√
max(0, K) < π, where K is the maximum Gaussian curvature within

the geodesic ball (disc), then the ball is called regular and any two points within the ball
are connected by a unique geodesic. This provides a theoretical bound on the size of our
parameterized geodesic disc.

One useful property of normal coordinates is that at p, the metric tensor g is the
identity matrix [Deturck and Kazdan 1981]. Intuitively, this means that the log map
is a local isometry, so distances in normal coordinates correspond to distances on the
manifold, although only in the limit. As one moves away from p, the deviation from
isometry depends on the variation in Gaussian curvature, so the flatter the surface, the
lower the distortion in the map between S and Tp. On a developable surface, where
Gaussian curvature is everywhere 0, the entire map is an isometry.

In Figure 4.1 a sphere is a texture-mapped using analytic normal coordinates. The
checkerboard texture exhibits low distortion near p, where the normal coordinates es-
sentially preserve the intuitive “squareness” of the 2D texture. Note, however, that the
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mapping is not conformal - angles are not preserved, and distortion in the mapping
increases to catastrophic levels as the distance to p grows.

4.2.1 Computing Normal Coordinates

If S is defined analytically, it is possible to compute analytic normal coordinate expan-
sions. This approach has been pursued primarily in the mathematical physics literature,
where normal coordinates are of great utility when analyzing the curved spaces of gen-
eral relativity. As an early example, Dolgov and Khriplovich [Dolgov and Khriplovich
1983] provide a fourth-order expansion of normal coordinates along a geodesic. Modern
computational algebra and tensor software allows for expansions of arbitrary complexity,
see [Brewin 2009] for examples and a survey of recent work.

The focus of this thesis is discrete surfaces, where the surface is approximated by a
set of samples, possibly with mesh connectivity. In this latter case, if p is a mesh vertex,
projection of neighbouring vertices q onto the tangent plane at p is a commonly-used
local approximation to logp(q). This mapping is dependent on the normal vector and
can degenerate, so Welch and Witkin [Welch and Witkin 1994] more robustly approxi-
mate logp on the one-ring neighbourhood of p by scaling the interior angles such that
they sum to 2π. However, this method does not have an obvious extension to larger
neighbourhoods.

In some sense, any parameterization algorithm [Sheffer et al. 2006] applied to a local
patch around p will produce an approximation to logp. Pedersen [Pedersen 1995] first
defines a “geodesic quadrilateral”, then generates a vector field within the interior and
parameterizes the patch using iso-parametric curves of this vector field. Schneider et
al [Schneider et al. 2009] apply surface-constrained mass-spring relaxation, while Shapira
and Shamir [Shapira and Shamir 2009] constrain vertices at a fixed geodesic radius to a
circle and then flatten the interior using mean-value coordinates. Such algorithms can
make no guarantees about radial geodesic distances or angles, and hence most of the
desirable properties of normal coordinates are lost.

A direct approach to computing logp is to trace a radial geodesic from p to each q. Di-
jkstra’s algorithm [Dijkstra 1959] is perhaps the best-known technique for approximating
geodesic distances. However the piecewise linear geodesics produced by Dijkstra’s algo-
rithm always lie on graph edges and hence provide a very poor estimation of θg. Recent
work in geodesic distance approximation can be applied, as the geodesic curve can be
found by “back-tracing” through the geodesic distance gradient field [Peyré and Cohen
2005]. Mitchell [Mitchell 2000] surveys a variety of such algorithms, and Surazhsky et
al. [Surazhsky et al. 2005] describe an algorithm which computes exact and approximate
distances on triangle meshes, although with a high memory cost. Fast-marching solu-
tions to the eikonal equation front propagation methods can also be applied to compute
geodesic distances on meshes and point clouds [Kimmel and Sethian 1998].

Although these geodesic distance computations are oftenO(N logN), the back-tracing
step is expensive. Brun [Brun 2008] describes a more efficient alternative, which exploits
the fact that the log map is related to the gradient of the squared geodesic distance field:

logp(q) = −1

2
∇yd

2
g(y,q)

∣∣∣
y=p

. (4.1)
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Here dg(y,q) is the geodesic distance field generated from point q and ∇y is the gradient
at y. Essentially, this formula says that the normal coordinate at q can be found by first
computing the geodesic distance field emanating from q, then finding the gradient of this
field at p. Since it would be inefficient to compute a geodesic distance field for each q,
Brun instead computes the geodesic distance field at several points surrounding p. Using
these samples he discretely approximates the gradient at p for each q. This approach
provides a highly accurate approximation to logp which reproduces any discontinuities
in the geodesic distance field. Unfortunately, for our purposes this exact reproduction of
the cut loci is undesirable. The methods I propose later in this chapter will ultimately
smooth out such discontinuities, creating more desirable parameterizations for graphics
applications.

Although not explicitly used to assign local coordinates, Zelinka and Garland’s geodesic
fans [Zelinka and Garland 2004] consist of a set of piecewise-linear radial geodesic curves
traced outwards from p. Approximate normal coordinates could be found by projecting
vertices q onto the geodesic fan, however this is computationally intensive and may result
in local foldovers if the fan is too coarse relative to the underlying surface.

Figure 4.1: Checkerboard texture applied to sphere using analytic parameterization (top)
and discrete approximation (bottom). Front views show very high correspondence. Overall
patterns in side and back views are similar, however the approximation exhibits errors
accumulated during propagation. Rightmost images show 2D parameter space for lower-
resolution triangulated spheres.

4.3 The Discrete Exponential Map

Assume we are given a set of samples (pi,ni) taken from some underlying smooth surface
S, where pi is a point in 3D and ni is the surface normal. Given a point pi, our goal is
to assign normal coordinates to the samples within some geodesic neighbourhood of pi.
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Rather than attempting to find the geodesic curve from p to each neighbouring point
q, which would then determine the geodesic polar coordinates, the DEM DEM incremen-
tally “lifts” nearby points into Tp by propagating normal coordinates outwards from p.
This computation is performed directly in the tangent space at p. The resulting algo-
rithm requires only a simple vector addition along the piecewise-linear curves produced
by Dijkstra’s algorithm.

Before we begin, a note about naming. The algorithm in this section will be referred
to as the Discrete Exponential Map or DEM. Brun [Brun 2008] pointed out that as we are
mapping from surface to normal coordinates, the DEM algorithm in fact approximates
the log map. However, as the algorithm projects each sample of S into Tp, it effectively
finds a pointwise definition of both logp and expp. Hence, for consistency with the original
publication [Schmidt et al. 2006] and works which refer to it, I will retain the original
name.

4.3.1 DEM Algorithm

To find the tangent-space coordinate Tpq, assume that we have a piecewise-linear path
{q0,q1, . . . ,qn} from p to qn, where for notational convenience, q0 = p and qn = q.
Then Tpq can be defined recursively as

Tq0qn = Tq0qn−1 + Pqn−1 · Tqn−1qn (4.2)

where Px is an operator that projects vectors from the tangent space Tx into Tp. The
Discrete Exponential Map (DEM) simply implements this recursion on a point-sampled
surface. To do so, we must define approximations for the projection operator Px and the
“local” tangent-space coordinates Tq in the neighbourhood of any point q.

Figure 4.2: The exp / log map at a point p takes geodesic curves originating at p to
straight vectors emanating from the origin of the tangent space Tp (a). Iso-contours of
the geodesic distance function are mapped to circles about the origin of Tp. The normal
coordinates up,q of the unknown radial geodesic from p to q in (b) can be approximated
using the known geodesics from p to r and r to q. The vector to ur,q (in normal coordi-
nates at r) is transferred to the tangent plane at p using a 2D rotation with angle θp,r,
producing the red vector in (c). This vector is an approximation to (up,q-up,r) and can be
added to up,r (d) to get the approximate result up,q. In this figure, up,q = Tpq.
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Tangent Space Alignment

I will defer the problem of local tangent-space coordinates and focus on approximating
Px. Consider the simplest case: 3 points p, r, and q. Assume the local geodesics from p
to r and r to q are known, but the geodesic from p to q is not (Figure 4.2b). Our goal is
not to find this geodesic but rather to compute the 2D normal coordinate Tpq. Linearity
allows us to write Tpq = v+Tpq−v, where v is any vector in Tp. Let v = logp(r) = Tpr.
This is the known geodesic from p to r. We now have

Tpq = Tpr + (Tpq− Tpr) (4.3)

The 2D vector (Tpq − Tpr) corresponds to some unknown curve on the surface from r
to q, which in the general case is not a geodesic. Regardless, we will approximate this
curve with the known geodesic from r to q, which defines the normal coordinate of q in
the tangent space at r, namely Trq. This is the necessary vector, however it is defined
in the tangent space Tr, which in general will not have the same basis vectors as Tp.

To resolve this conflict, consider our 2D tangent-space vectors in their respective
3D tangent planes, which are defined by triplets of orthogonal basis vectors (e1, e2,n),
where n is the surface normal. We then have (e1

r, e
2
r,nr) at r and (e1

p, e
2
p,np) at p. First

construct the 3D rotation Mn that aligns nr with np, then a second rotation Me1 that
aligns Mne1

r with e1
p. By applying the combined rotation (Me1Mn), we bring the two

tangent spaces into alignment. We can now perform the vector summation in the 3D
tangent plane at p, and project back into the 2D tangent space.

Note that Me1 simply rotates vectors in the tangent plane around the normal np by
some angle θp,r. Since our goal is to transform Trq, which is a 2D vector embedded in the
tangent plane, we can simply apply a 2D rotation by θp,r to the tangent space. Hence,
Tpq can be approximated by

Tpq = Tpr + Rot2D [ θr,p ] · Trq (4.4)

as shown in Figure 4.2d (the red vector is Rot2D [ θp,r ] · Trq). Note that the in-plane
basis vectors e1 and e2 are completely arbitrary, the only requirement is that they be
orthogonal.

Equation 4.4 involves two approximations. First, we used the geodesic from r to q to
approximate the curve defined by applying exp to the line from Tpr to Tpq. This curve
is only a geodesic on developable regions, where Gaussian curvature K is everywhere 0.
As the surface becomes more curved, this approximation suffers. This is easy to see in
the analytic normal coordinates on the sphere in Figure 4.1 - most of the straight edges
in the checkerboard clearly do not map to geodesics as we move away from p. However,
note that we use this approximation only locally.

Second, we used a simple affine transformation to map between the tangent spaces
Tr and Tp. Minding’s theorem states that this map is an isometry only between surfaces
where K is constant [do Carmo 1976]. So this map is accurate on a sphere or developable
surface, but it otherwise introduces additional error.
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Local Tangent-Space Coordinates

Equation 4.2 applies the projection operator which we have just defined to the “local”
tangent-space coordinate Trq. On a discrete surface, these local neighbourhoods will
either be one-rings of triangle meshes, Euclidean ε-balls, or k-nearest neighbours (k −
NN). Lacking any additional information, we can only assume that Euclidean distance
is an adequate approximation of the geodesic distance 1. Hence, we need only to estimate
the geodesic polar angle θg.

We have the sample (p,n), as well as a set of neighbours {(qi,ni)}. First we define the
tangent-plane orthogonal to n, with orthogonal basis (e1, e2,n). The standard approach
to estimating θg is then to compute the angle between e1 and the projection of the vector
−→pqi onto the tangent plane.

One can easily construct cases where this projection fails. For example, if qi lies in
a plane, the projection of p onto this plane falls outside the convex hull of qi. We can
make a small improvement using the normals at p and qi. We replace the projection in
the description above with a rotation around the vector n×−→pqi by the angle θq between
−→pqi and the tangent plane. In well-conditioned cases, this gives the same result as the
projection. However, if n ·ni < 0, we can assume that the neighbourhood covers a region
where the surface turns back over itself, for example at the rim of a cup. Then qi is on
the ’far side’ of such a surface, and hence we should rotate in the opposite direction, by
angle π − θq.

This rotation approach is an improvement, but still fails to properly unfold some
neighbourhoods. Generally in such cases the underlying surface is inadequately or nois-
ily sampled, and we cannot expect the algorithm to perform accurately without additional
processing of the point set. Note, however, that these projection failures are not necessar-
ily catastrophic. In most cases they simply introduce a small local foldover for one-ring
neighbourhoods. One possibility in this case would be to adapt the angle-spreading tech-
nique of Welch and Witkin [Welch and Witkin 1994]. For point set neighbourhoods, such
cases usually occur at points which do not have a well-defined local manifold, and are
perhaps best discarded.

DEM Front Propagation

We have defined the two mathematical steps necessary to evaluate the recursive Equa-
tion 4.2. In the notation of Equation 4.4, pseudocode for this expression is

Trq = ‖q− r‖ ( e1
r · (q-r) , e2

r · (q-r) )

‖ ( e1
r · (q-r) , e2

r · (q-r) ) ‖
(4.5)

Mn = Rot3D [ nr × np , acos(nr · np) ] (4.6)

Tpq = Rot2D
[

acos(e1
p,Mn e1

r)
]
Trq (4.7)

where Rot3D is an axis-angle rotation matrix, and Rot2D is a 2D rotation matrix. Note,
however, that care must be taken to properly handle mathematical and numerical degen-

1Belkin & Niyogi [Belkin and Niyogi 2008] note that such Euclidean distances approximate the
geodesic distance up to order three.
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Figure 4.3: Although the Discrete Exponential Map estimates the normal coordinate up
from a single upwind sample (a), other nearby points on the front provide equally likely
estimates (b) which can be averaged to enhance DEM robustness (c).

eracies arising from cases such as near-parallel normals.
The only remaining question is how to define the piecewise-linear path from p to

q. To minimize error, this path should be as close of an approximation to the actual
geodesic as possible. While there are many possible approaches, the one I propose below
is efficient and simple to implement.

If each p is connected to a local neighbourhood of points using one of the methods
described above, then we have a connected graph over the point set. Dijkstra’s algorithm
can be applied to find the minimum graph distance from p to each other point. If we set
the edge costs equal to their Euclidean distances, Dijkstra’s algorithm then approximates
the geodesic distance. Furthermore, in computing this distance Dijkstra’s algorithm also
defines a piecewise-linear path from p to each qi.

The algorithm is a simple front propagation Again consider three points p, r, and q,
where the geodesic distance from p to r is already known, and q is a neighbour of r. The
distance dg(p,q) can then be defined as

dg(p,q) = dg(p, r) + ‖r− q‖. (4.8)

This equation has the same form as Equation 4.2. Hence, as Dijkstra’s algorithm
propagates distances outwards from p, we can simply append another step which propa-
gates normal coordinates. Equation 4.2 is then evaluated in-line, and as it takes constant
time, the O(N logN) runtime complexity of the priority-queue implementation of Dijk-
stra’s algorithm is unchanged.

Note that each local tangent-space vector is mapped directly into the tangent space
at p, rather than being incrementally mapped through each previous tangent plane along
its path. The conditions described above on the tangent plane mapping hold regardless
of the distance between p and pi. Transforming the vector through each previous tangent
plane results in much higher total error.

4.3.2 Upwind Averaging

One limitation of the DEM is that any error introduced at qi will be propagated to down-
wind points whose path passes through qi, potentially leading to catastrophic failures.
Similarly, as the paths are completely independent the error can vary wildly between two
neighbouring points. This often occurs at discontinuities in the geodesic distance field,
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and will appear as ’tears’ in a texture pattern mapped onto the surface using the normal
coordinate parameterization. Several authors have noted that these problems tend to
limit the use of the DEM to relatively flat and smooth regions [Cipriano and Gleicher
2007; Schmidt and Singh 2008].

Since the DEM sums vectors rather than scalars, Tpq could be estimated from any
nearby point whose tangent-space coordinate is already known. In the terminology of
front propagation, such points are referred to as being upwind from q. As the normal
coordinate generated using each upwind point will be slightly different due to geometric
and numerical errors, we re-define Tpq as a weighted average of these estimates:

Tpq =
∑
i

w(q, ri) (Tpri + PriTriq ) (4.9)

where ri are nearby upwind neighbours (Figure 4.3) and w is the inverse distance weight

w(x,y) = (‖x− y‖2 + ε)-1. (4.10)

As shown in Figures 4.4 and 4.5, upwind averaging significantly improves DEM ro-
bustness, with a small 5-10% increase in runtime cost.

Figure 4.4: The DEM is prone to “tearing” and foldovers when crossing regions with wide
variation in curvature (a). The upwind average DEM (b) has only a few small foldovers
near very high-frequency changes, which are relaxed by the addition of normal smoothing
(c), resulting in a much more robust parameterization. Similarly, for certain seed points
(red dot) on a highly irregular bunny mesh (d), the original DEM fails catastrophically
(e). The upwind-average DEM is more robust (f), and with the addition of local normal
smoothing (g) a low-distortion parameterization is produced.

4.3.3 Normal Smoothing

As we have seen, variation in surface curvature is the root of most of the fundamental
mathematical limitations of the DEM. Intuitively, if we were to apply smoothing opera-
tions to the set of surface samples, curvature variation in the surface would be decreased,
so on the smoothed surface the DEM would be more robust.
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Considering the equations we have presented so far, it is clear that the DEM is
essentially a function of surface normals and distances between points. Local smoothing
operations have a much larger effect on the surface normals than they do on the inter-
point distances. Furthermore, on most discrete surfaces the normals at samples are
not given, but must be estimated from the sample positions. This estimation is often
noisy at best. As a result of these two observations, a reasonable strategy is to apply
smoothing directly to the normal field, rather than smoothing the surface and estimating
new normal vectors. The effect of doing so is essentially to relax the normal coordinate
parameterization in regions of higher curvature.

Replacing each normal with a distance-weighted average of k-neighbourhood normals
results in a significant improvement and can be efficiently evaluated in-line with the DEM.
Figure 4.4 shows that, combined with upwind averaging, normal smoothing results in
much more stable maps (Figure 4.4). Figure 4.5 compares the individual and combined
effect of each of these modifications in two different cases. In the first, a spurious flipped
normal introduces major failures, which upwind averaging can only smooth out. Normal
smoothing repairs the flip. This sort of problem is very common when estimating normals
from poorly-sampled surfaces, and hence normal smoothing has the larger visible effect.
In the second row of Figure 4.5, however, the visible tearing in the parameterization
is caused by geodesic discontinuities. Normal smoothing has little effect in such cases.
Upwind averaging, however, integrates information from paths which have gone “around”
the discontinuity, and hence after a short distance the distortion introduced by the ear
has dissipated.

Figure 4.5: Results computed using (a) the original DEM, (b) the upwind-average DEM,
(c) the original DEM with local normal smoothing, and (d) the upwind-average DEM
with local normal smoothing.

Multiple rounds of normal smoothing will generally increase the smoothness of the
parameterization, at the cost of increasing local metric distortion. If we consider the ex-
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treme case of replacing all normals with a constant vector, then no frame alignments are
necessary. If we also remove the re-scaling step in Equation 4.5 which preserves the local
vector lengths, then the DEM is exactly a planar projection. Hence, when we smooth
normals, we are effectively projecting the local tangent vectors into the tangent space of
the surface described by those smoothed normals. As the normal field becomes increas-
ingly smooth, the parameterization locally approaches that which would be computed
using tangent-plane projection, while preserving sense of the surface curvature at larger
scales.

This property has an interesting application for generating flattenings of local features
such as holes and handles, as shown in Figure 4.6. In this case one can imagine a smooth
base surface that the handles are lying on. We can attempt to infer the normal field
of this smoothed surface by using many rounds of normal smoothing. Observing the
normal field, we see that the portions of the handles protruding from the surface are now
perpendicular to their normals. Hence, during the DEM projection, the vector sum of
these components will largely cancel out, and the result is that the handles are effectively
projected onto the base surface. If we remove the re-scaling step in Equation 4.5, then
after projection these near-perpendicular vectors have minimal contribution, leading to
a smoother result. This more general DEM has interesting capabilities, and we are
currently exploring potential applications.

Figure 4.6: Generally, surfaces with (a) non-planar topology cannot be parameterized to
the plane. However, by using (b) a highly smoothed normal field, the DEM will essentially
(c,e) parameterize the topological handles “onto” the base surface. Skipping the scale-
preservation step of the local tangent-space vectors (d,f) generates smoother results.
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4.4 Properties of the DEM

In the previous section I introduced the Discrete Exponential Map (DEM) and several
variants, which generate approximate normal coordinates on a point-sampled surface.
There are a variety of questions one might ask about these algorithms. For example, do
they reproduce properties of the analytic log map? Do they converge to analytic normal
coordinates? When do they fail, and what causes these failures? In this section we will
consider these and other aspects of the DEM.

4.4.1 Sampling Considerations

The sampling rate of the underlying point set largely determines the accuracy in the
DEM. The first requirement on sampling rate is that local geodesic neighbourhoods must
be computable. We use a k -nearest geodesic neighbour scheme, with k = 10. If mesh con-
nectivity is unavailable, nearest Euclidean neighbours are assumed to be geodesic neigh-
bours. This assumption is valid only if global sampling criteria hold [Dey and Goswami
2004]. In some cases, such as subdivision and implicit surfaces, additional samples can
be generated automatically to resolve undersampling. Otherwise, algorithms that take a
global approach to the neighbour-determination problem are necessary [Fleishman et al.
2005]. Note also that k-neighbourhoods have some issues on highly irregular sampling,
Bendels et al. [Bendels et al. 2006] describe a symmetric kε-neighbourhood which ro-
bustly handles these cases.

Figure 4.7: Sample density/distribution has minimal effect on the DEM, even in cases
with very irregular distributions (a,c) which would be problematic for most mesh param-
eterization methods due to the sliver triangles. Mesh edges are shown here to convey the
sample distribution; the parameterization is computed directly from the vertex point set.
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Given adequate sampling, we have found the DEM to be very robust in practice.
In particular, there is no requirement that the surface sampling be regular. The tool
used to create most of the figures in this section was based on implicit surfaces visual-
ized using marching cubes. The marching cubes implementation did not generate mesh
connectivity data, so we take the vertex set as our surface sampling and generate Eu-
clidean k-NN neighbourhoods. Marching cubes is known to produce very irregular vertex
distributions, resulting in a worst-case sampling density much lower than the equivalent
number of points evenly distributed. The resulting map is visually indistinguishable from
that computed with a more regular sample distribution, even at moderate tessellation
resolutions (Figure 4.7).

The DEM does assume that accurate surface normals are available. As shown in
Figure 4.8, noise in the surface normals introduces local distortions, but the general
structure of the output remains stable. This property explains why normal smoothing
can have such a beneficial effect - it relaxes these small local distortions. Noise in the
sample positions, however, affects the geodesic distances and is much more problematic.
The unmodified DEM will quickly degenerate in the presence of surface noise, although
with upwind averaging and normal smoothing performance is somewhat improved.

Figure 4.8: Texture mapping from DEM normal coordinates on point sets with noise in
the normal vectors. The underlying point set is sampled from an analytic sphere, however
uniformly-distributed random noise has been added to the normal vectors. The maximum
noise is (left to right) 5%, 10%, 25%, and 50%. Inaccurate normal vectors introduce very
local distortion, however the overall structure is preserved.

One final aspect to consider is the sample connectivity graph itself. In many appli-
cations of the DEM, mesh connectivity will be available. However, in many cases mesh
connectivity is a poor proxy for geodesic connectivity. For example, consider a standard
algorithm for tessellating a plane. We first dice it up into quads, and then split each quad
into two triangles. In this case each vertex is connected to its 4 nearest neighbours, and
2 of the four next-nearest neighbours. This irregular pattern can lead to artifacts in the
approximate normal coordinates. Hence, I have found that even when mesh connectivity
is available it is preferable to use Euclidean k-NN or ε-ball neighbourhoods. Even these
neighbourhoods can have problems near boundaries or on surfaces with highly irregular
sampling. Bendels et al. [Bendels et al. 2006] discuss these problems and describe a
mixed kε neighbourhood that robustly handles such cases.
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4.4.2 Developable Surfaces

One property of analytic normal coordinates is that on fully developable surfaces, where
Gaussian curvature K is everywhere 0, there is no metric distortion, so the metric tensor
g is the identity matrix. Intuitively, this means that the 3D surface can be unfolded into
a 2D plane without any stretching, or alternately, that we could construct the 3D surface
by smoothly bending a stiff piece of paper.

Some simple types of developable surfaces include cylindrical surfaces generated by
extruding a curve along an infinite axis, and cones created by revolving a line around an
infinite axis. As shown in Figure 4.9, the DEM reproduces this no-distortion property
on fully developable cylindrical surfaces, up to numerical and discretization limits.

On the cone, however, the DEM generates artifacts at points on the “back half” of
the cone. These artifacts occur because at the tip of the cone K = ∞, so the surface
is not fully developable. Although the patch being parameterized may be developable,
because the DEM is a vector summation in the tangent space, the paths to points on the
back side of the cone are influenced by the non-developable apex. I will discuss this issue
at length in Section 4.4.4.

Figure 4.9: Normal coordinate maps generated for developable surface patches - (a) swiss
roll, (b)/(c) cone front/back, and (d) box. Artifacts occur on the cone because it is not
developable at the apex.

4.4.3 Geodesic Discontinuities

As we noted in Section 4.2, the log map is only diffeomorphic within a local neighbour-
hood. This is because on most surfaces, variations in curvature will cause the minimizing
geodesics emanating from p to intersect at certain points on the surface, the set of which
is known as the cut locus. If we were to visualize the scalar field of geodesic distances to
p, the cut locus would be visible as a set of discontinuities in this field. Hence, the cut
locus is the set of points q at which there are multiple “shortest path” curves to p with
the same length.

A simple example of the problems introduced by the cut locus can be constructed by
smoothly deforming a small bump out from a plane, and computing the tangent space
at some point on one side of the bump, as in Figure 4.10a-b. In this case the cut locus is
a line on the surface which begins at the tip of the bump. As the DEM grows a geodesic
disc outward from p, in the tangent space this geodesic disc will be mapped to a 2D
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Figure 4.10: Surface curvature leads to discontinuities in the geodesic distance field,
causing stretching in the tangent space (a-b), which is visible as distortion and tearing
in mapped textures (a,c,d). With upwind averaging these discontinuities are not only
smoothed, but often dissipate at some distance (e,f).

disc with a wedge cut from it (like pac-man). On a low-resolution triangular mesh, this
discontinuity manifests itself as stretching of the triangles in the tangent space, which in
turn leads to compression of the checkers in the texture-mapped surface.

If we increase the resolution of the surface, as in Figure 4.10c-d, the impact of the cut
locus becomes more localized, and begins to appear as ’tears’ in the texture mapping.
Although these effects are accurate in terms of the analytic mathematical properties of
normal coordinates [Brun 2008], they are problematic for many of the computer graph-
ics applications of normal coordinates, where a smooth and connected local coordinate
system is more important.

In the previous two cases, if we slightly move p we may observe large and seemingly
random changes in this distortion. This chaotic behavior is due to the fact that in the
original DEM the coordinates assigned depend on which path is taken to each vertex by
Dijkstra’s algorithm. At points on the cut locus, a choice must be made between two
entirely different paths.

The addition of the upwind averaging described in Section 4.3.2 instead averages
these paths, significantly reducing the undesirable effects of the cut locus. Figure 4.10e-f
shows that not only does upwind averaging reduce the irregular variations and make
the result more symmetric, it also damps out the distortion as the parameterization
moves past the point where the cut locus would begin. Essentially, this is because at
each point additional information from neighbours off the cut locus is being integrated,
which will eventually overcome the geometric ’shock’ introduced when the cut locus was
first encountered. Hence, upwind averaging is in some sense analogous to the viscosity
solutions used in front propagation, which prevent discontinuities from developing in
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distance fields and other advancing fronts.

4.4.4 Gaps and Holes

Figure 4.11: When crossing a geodesically convex region, the path taken from p to q (a)
roughly corresponds to the radial geodesic defined by Tpq (b). When taking a path (c)
around a “geodesic” hole, however, the vector sum in the tangent space produces roughly
the same normal coordinate (d), and hence a radial geodesic that passes over the hole.
Another example is shown in (e-f).

Several times I have stated that the DEM propagates normal coordinates outwards
from the point p. While a geodesic propagation on the surface is used to determine the
propagation order, the actual normal coordinate propagation is performed in the tangent
space. In many cases this difference is inconsequential, but there is a specific case where
it has a major impact, and that is on surfaces where the disc growing on the surface is
geodesically non-convex - i.e., it has holes in it.

A simple example is shown in Figure 4.11a. On this lozenge surface, the geodesic path
takes a direct route from p to q. In the tangent space, this path is mapped to a straight
line outwards from the origin. Now we cut away a portion of the lozenge, which is shown
in grey in Figure 4.11c. The geodesic path on the surface now must travel “around” the
missing region. If we consider the surface underneath this path, we see that it is close
to developable, so we should expect low distortion. However, the mapped texture looks
roughly the same as in Figure 4.11a.

To understand this effect, we must consider what is happening in the tangent space.
A sketch of the tangent-space path taken by this geodesic is shown in Figure 4.11d. Note
that the path is not shown as a straight line from the origin - ie it is not a radial geodesic.
This is because the DEM sums vectors in 2D. We can arbitrarily perturb points along the
straight-line path to Tpq, but the sum of the vector differences will add up to the same
location, as in Equation 4.3. This same property holds, up to the errors introduced by
our approximations, when we compute the differential vectors in different tangent spaces
and map them into Tp.

What this means is that if we remove a portion of the geodesic disc, the normal
coordinates generated by the DEM will appear to “pass over” the resulting hole. Another
example is shown in Figure 4.11e-f. Here we have a piece of surface taken from a rounded
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cylinder. The patch is near-developable, with only a small amount of curvature along
the rim. Global parameterization algorithms can flatten this surface with very little
distortion. The normal coordinate map, though, has high metric distortion and the
cylindrical portion is strangely curved. If we consider what the normal coordinates on
the full rounded cylinder would be, however, we see that Figure 4.11f is very close to
what one would expect.

The problem with the cone that was observed in Figure 4.9 is now more apparent.
Even if the tip is missing, the tangent-space paths in the DEM pass through the non-
developable region around the tip of the cone. This is an interesting difference with
the LogMap algorithm of Brun [Brun 2008], which computes normal coordinates based
on the gradient of the geodesic distance field. As this is a completely local calculation
on the surface, it will not pass around holes like the DEM, and will correctly recover
the developable normal-coordinate flattening of the cone. While in some cases it may be
desirable that the normal coordinates take holes into account, I will show in Section 4.6.3
that we can put the DEM’s handling of holes to practical use.

4.4.5 Empirical Error Analysis

The DEM assigns a normal coordinate to each 3D neighbour q of p by projecting a set
of displacement vectors into the 2D tangent space Tp. Since normal coordinates have
an analytic definition, an obvious question is whether the normal coordinates output by
the DEM converge to analytic normal coordinates as the sampling rate increases. One
difficulty in performing such an analysis is that there are very few surfaces for which
analytic normal coordinates can be computed in closed form. My results are limited to
comparisons on a sphere, although I will briefly return to the question of more rigorous
analysis of the DEM at the end of the section.

Geodesic Distance Error As I noted in Section 4.2, the magnitude of the normal
coordinate ‖Tpq‖ is the minimal geodesic distances from p to q. In Figure 4.12 I have
plotted the deviation from the true geodesic distance for each point on a sphere near-
regularly sampled with 5000 points. The DEM was evaluated at the north pole, and
the algorithm was implemented in C++ using 32-bit floating point arithmetic. We can
immediately observe that the approximation error is quite low for the first half of the
sphere (ie the northern hemisphere), but grows rapidly once we pass that point. This is
in part because after passing the equator the geodesics between to “compress” as they
move towards the south pole. This compression is problematic for Dijkstra’s algorithm,
which is forced to assign each point to one path.

Remember that one of the approximations we have made is two replace “real” local
geodesics with a linear approximation (Euclidean distance). Figure 4.12 also compares
using analytic and approximate local geodesics in the DEM. We see that this approxi-
mation has little effect - the accuracy with real geodesics is at best slightly improved.
This agrees with Belkin & Niyogi’s [Belkin and Niyogi 2008] observation that Euclidean
distance approximates geodesic distance up to order three.

One important question is whether the DEM approximates the geodesic distance with
more accuracy than the graph distances generated by Dijkstra’s algorithm. The latter
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Geodesic Distance from North Pole
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Geodesic Error on a Unit Sphere (5000 Samples)

Figure 4.12: Error in geodesic distance of the DEM on a sphere, with analytic and ap-
proximate (Euclidean) local geodesic distances.

are known to not converge to geodesic distances under increasing sampling. As we see in
Figure 4.13, the DEM is significantly more accurate. The effect of the non-convergence
of the Dijkstra graph distances is visible in Figure 4.14, where we compute a normal
coordinate based on the DEM geodesic polar angle, but the Dijkstra graph distances.
The “wiggliness” of the Dijkstra is virtually as the sampling rate increases.

This improvement in approximation accuracy is reminiscent of the improvement in
Euclidean distance approximation observed when using vector distance transforms, which
sum vectors, instead of chamfer distance transforms, which sum only distances [Satherley
and Jones 2001]. In some sense, the DEM can be thought of as a vector distance transform
“in the surface”.

Geodesic Polar Angle Error In addition to the geodesic distance rg, the DEM also
defines the geodesic polar angle θg (Section 4.2). In Figure 4.15 we plot the angular
error computed using the same conditions as in Figure 4.12. Again, we see that the error
remains very low until we pass the equator, in this case less than half a degree.

Convergence While the DEM does appear to visual converge as the sampling rate is
increased, analyzing convergence more rigorously is challenging because there are vari-
ety of ways that the piecewise-linear path from p to q can vary. In Figure 4.16 I took
the approach of finding the analytic geodesic, placing samples along it, randomly per-
turbing each sample, and then projecting it back onto the unit sphere. The values in
this figure were computed in Mathematica, which uses an arbitrary-precision numerical
representation.

In Figure 4.16a we consider the simplest case, where there are only 3 points. As the
distance between the points increases, the geodesic error increases roughly quadratically.
In the following two plots I have constructed similar cases with 50 and 100 samples per-



Chapter 4. Representing Regions on Surfaces 72

Geodesic Distance from North Pole
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Figure 4.13: Error in geodesic distance of the DEM on a sphere, with analytic and approx-
imate (Euclidean) local geodesic distances, compared with the Euclidean Graph Distance
calculated by Dijkstra’s Algorithm.

Figure 4.14: DEM normal-coordinate parameterizations based on radial geodesic distances
approximated using Dijkstra’s Algorithm (top) and Discrete Exponential Map (bottom).
The underlying point set is extracted from a marching cubes mesh at voxel-resolution-per-
edge of 30, 50, 100, 200 (left to right).
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Angle Error on a Unit Sphere (5000 Samples)
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Figure 4.15: Error in geodesic polar angle of the DEM on a sphere.

turbed from the analytic geodesic (connectivity is fixed by the initial sampling). Again,
we observe convergence as the average inter-sample distance decreases, and the con-
vergence appears to be mildly super-linear. Note also that adding more samples does
improve the approximation accuracy.
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Figure 4.16: Geodesic distances computed with the DEM are compared with true geodesic
distances on a sphere, while varying the distance between the samples used in the approx-
imation. In (a), the base-case of 3 points is tested, while (b) and (c) use piecewise-linear
paths with 50 and 100 segments, respectively. The intermediate points are initialized on
the geodesic and then randomly offset along the surface by up to a maximum geodesic
distance (X axis). Each data point is the average of 10 runs.

So far we have focused on the original DEM algorithm. Figure 4.17 compares conver-
gence of the original DEM with that of the upwind-average DEM (UA-DEM). The three
cases considered are the error in geodesic distance, geodesic polar angle, and the L2 error
in the 2D normal coordinates. Both the mean and max error are plotted as the sampling
rate of the sphere increases. The values are computed on the first geodesic quarter of the
sphere, ie points within a geodesic radius of pi/4 from the north pole. In this case the
computation is performed in double-precision (64-bit) floating point.

We immediately observe some of the properties we have already seen, such as that
the geodesic error in the DEM appears to decrease quadratically. As we might expect,
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the geodesic error in the upwind DEM is significantly higher. This is easily explained
if we consider that on a sphere, the ’best’ distance approximation is always defined by
the nearest sample. Averaging this value with others will always reduce the accuracy,
causing a slight ’drag’ on the accumulation of geodesic distance.

In the geodesic polar angle, however, we see that the UA-DEM does markedly better
than the original DEM. These two effects seem to average out to roughly the same mean
behavior in the L2 error, which is ultimately a combination of the distance and angular
errors. However, there is a visible improvement in the maximum (L∞) error with the
UA-DEM.

These results suggest an interesting possibility. The DEM clearly better-approximates
geodesic distance, while the UA-DEM is more accurate on the angular error. Nothing
prevents us from combining the two. Repeating the experiment in Figure 4.17, I found
that this ’mixed’ DEM produces an order-of-magnitude improvement in mean L2 error,
with the maximum error of the UA-DEM. Since the geodesic error in the UA-DEM is
in part caused by the convexity of the sphere, this improvement may not hold on more
complex surfaces. However, it is a possible avenue for future consideration.

Figure 4.17: Convergence behavior for absolute error in geodesic distance and geodesic po-
lar angle, and L2 error in normal coordinates, for the original DEM and upwind-average
DEM (UA-DEM). Mean and maximum curves are plotted. The values are computed on
samples within a geodesic disc of radius π/4 from the north pole of a sphere, sampled
with the numbers of points shown. In each case the vertical axis is the error magnitude,
on a log scale.

Towards Convergence and Approximation Proofs

The empirical results above indicate that the DEM does converge on a sphere. A rigorous
analytic proof of this property seems plausible, and may be of some value, particularly if
it can be extended to more general surfaces. Even more desirable would be an analytic
bound on the approximation error, which would allow us to predict the quality of DEM
normal coordinates for a given sampling.

The main difficulty in constructing such proofs is that analytic normal coordinates
themselves are extremely difficult to work with. The higher-order analytic expansions
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provided by Brewin [Brewin 2009] involve several pages of formulas, with hundreds of
terms. Although some proofs take advantage of the properties of normal coordinates ’in
the limit’, they are rarely used explicitly as local coordinate systems, even in numerical
computations. Hence, existing literature provides little guidance on how to analyze
the DEM, beyond the bound on local geodesic approximation provided by Belkin &
Niyogi [Belkin and Niyogi 2008].

Rigorous analysis on a sphere may be considerably more straightforward, but is also
of limited value because the transformation between Tr and Tp is analytically a rigid-
body rotation. Minding’s theorem tells us that this is not the case for surfaces with
non-constant Gaussian curvature [do Carmo 1976]. On these surfaces we must take the
metric distortion into account, which again is very difficult to analyze. This mapping
between tangent spaces also appears to be rarely used in practice, although some recent
works have done so in the case of the group of rotations, which happens to lie on a
sphere [Kobilarov et al. 2009]. Crane et al. [Crane et al. 2010] have also recently provided
a theory of discrete connections, which support parallel transport of a vector from one
tangent space to another and hence may lead to more accurate computation of normal
coordinates.

4.5 Comparison to Mesh Parameterization Methods

Figure 4.18: Patches parameterized using global Conformal optimization (a,c) are less
“square” than the DEM results (b,d). In (c), the conformal parameterization extends
beyond the boundary of the underlying geodesic disc (blue star).

In the context of this thesis, my goal is not to explicitly develop techniques for approx-
imating normal coordinates, but rather to define a local coordinate system with desirable
properties. The wide variety of techniques for flattening a mesh-with-boundary to the
plane, known as global parameterization, global parameterization techniques, are obvious
alternatives to normal coordinates.

One drawback of global parameterization techniques is that they are often computa-
tionally intensive, making their use as a component of an interactive tool impractical.
Another issue is that most algorithms assume that mapping from 3D to 2D on the bound-
ary of the mesh is known a priori. Since this is not the case in our applications, we are
limited to free-boundary techniques.
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The free-boundary technique which has undergone the most extensive study is known
as global conformal parameterization. A conformal flattening is one which minimizes the
distortion of angles in the map from 3D to 2D. Desbrun et al [Desbrun et al. 2002] showed
that on triangular meshes, a conformal parameterization can be formulated in terms
of the minimization of a simple quadratic energy, based on the interior angles of each
triangle. This discrete conformal energy can be minimized via a sparse linear system, so
it is relatively efficient, and also has a natural boundary condition, so only two boundary
vertices must be fixed to determine the rotation and scale of the parameterization. Hence,
to compute a local parameterization with discrete natural conformal parameterization
(DNCP) [Desbrun et al. 2002], I first determine an approximate geodesic disc, where the
geodesic radius is determined via Dijkstra’s algorithm on the graph of mesh edges. The
triangles within this disc are segmented and parameterized.

Figure 4.18 compares the DEM with DNCP. My main observation in these and many
other cases has been that the DEM provides more predictable behavior. This often takes
the form of an apparent rigidity in the DEM map. For example, in Figure 4.18a, the
conformal map stretches outwards as it passes onto the cap of the cylinder, while the
DEM result remains roughly square. In fact, the distortion in the DNCP map begins to
occur even before the checkerboard passes over the border, which is inexplicable unless
one is aware of the extends of the underlying geodesic disc.

This intuitive sense of ’squareness’ generated by the DEM is perhaps due to the
fact that normal coordinates preserve geodesic distances from the center point, while
DNCP distorts geodesic distances to achieve lower angular distortion. Another effect
of unconstrained distortion in geodesic distances is that the portion of the conformal
parameterization lying in the unit-square can also expand beyond the boundary of the
geodesic disc. This leads to clipping when the unit square is used for texture mapping,
as in Figure 4.18c.

This inherent rigidity is a consequence of the DEM algorithm; as the normal coordi-
nates grow outwards, they do not “communicate” with far-away portions of the surface.
In contrast, DNCP and most other parameterization techniques use global optimization
methods, which generally minimize a squared error. This approach is known to be sen-
sitive to large-magnitude ’outliers’, so each vertex within the geodesic disc affects all
others. A practical consequence is that as the boundary or interior of the geodesic disc is
modified, the parameterization can completely change. This is particularly problematic
when temporal coherence is desired, see Figure 4.19.

Conformal coordinates do have some desirable properties, particularly with respect
to distortion, which, thanks to the global least-squares optimization, is usually much
smoother than with the DEM. As we have seen, in regions of high distortion or near the
cut locus, the “greedy” nature of the DEM generates many artifacts. These artifacts can
be repaired by applying conformal parameterization as a post-process. Highly-distorted
regions in the DEM normal coordinates are discarded and re-parameterized using natural
conformal parameterization, with the remaining DEM values used as constraints [Desbrun
et al. 2002]. The result is a combined DEM / Conformal map, or Hybrid map. As can be
seen in Figure 4.20, these hybrid maps can preserve some of the desirable properties of
the DEM, such as relatively ’square’ parameterizations with lower metric distortion. It
should be mentioned, however, that due to the large number of constraint points they can
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Figure 4.19: Final frames from a simple animation of a bump rising out of a flat surface
with DEM (a) and conformal (b) local coordinates. The DEM result is affected only
locally by the mesh deformation (c), while the conformal map deforms globally (d). This
deformation is not frame coherent, but rather rapidly oscillates as the shape changes.

be more expensive to compute, and may also be overconstrained, leading to catastrophic
foldovers.

4.6 Application: An Interactive Surface Texturing

Tool

Later in this thesis we will explore applications of normal coordinates to problems in
geometric modeling and surface representation. However, as we have already seen in
many examples, the DEM can be put to immediate use as a method to create local
parameterizations suitable for texture mapping. In this section I will describe an inter-
active texture-design tool for procedurally compositing local texture layers defined via
the DEM.

In many cases, these local textures will represent Parts of a model which could
otherwise be represented via geometry, such as an eye, nose, wrinkles, fur, and so on.
Without a tool based on procedural composition, the artist is forced to paint the final
composition as a single holistic image. Hence, the same problems I have noted with
surface modeling arise, namely how to represent the texture as a set of Parts which are
straightforward for the artist to interact with. The problem is simplified because, as all
the texture Parts “live” on the same surface, they can be trivially layered via painting
order. But overall, the texture-Part problem can be seen as a simplified version of the
more general surface-Part question I am exploring.

4.6.1 Background

Texture mapping [Blinn and Newell 1976] is one of the major stages in the modeling
and animation pipeline. Texture design is generally a manual process and consumes
a significant amount of the effort in most animation projects. Constrained parame-
terization [Lévy 2001] can provide some relief if suitable images are available, however
constraint placement is tedious and may need to be repeated if the surface or texture
is modified. Painting tools, particularly 3D painting systems [Hanrahan and Haeberli
1990], are the real workhorses of interactive texture design. Unfortunately these tools



Chapter 4. Representing Regions on Surfaces 78

Figure 4.20: Comparison between DEM (a), Hybrid (b), and Conformal (c) local coordi-
nates. The Hybrid map has less distortion but maintains a geodesic radius closer to the
DEM than the conformal map.
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are relatively inflexible. Useful operations such as copy-and-paste are unavailable and
there is no provision for re-using existing textures.

A third style of texturing interface, which combines aspects of both painting and con-
straint tools, is the decaling interface, introduced by Pedersen [1996]. In this approach
the metaphor is that of decals, or ’stickers’, which are 2D images affixed to the surface.
Decals are treated as independent scene elements which are simply constrained to lie on
surfaces, but may otherwise be interactively manipulated. Because a simple mapping
exists between the image and the surface, 2D image processing tools can be trivially im-
plemented. Decals are composited in real-time, mimicking 2D image compositing [Porter
and Duff 1984] and vector graphics interfaces. This approach allows artists to interact
with surface texture directly, using familiar 2D methods and tools.

Pedersen’s [1996] pioneering work on decaling interfaces had many practical limita-
tions. In addition to a global base parameterization, the artist had to define the four
corners of each decal, making interactions like dragging cumbersome. The focus of his
work was on this decal creation, rather than the interactions a decal texturing interface
can make possible. Similarly, other works with decal-like approaches such as lapped
textures [Praun et al. 2000] and texture sprites [Lefebvre et al. 2005] have focused on
technical aspects.

I have developed a decaling interface based on the DEM, which, due to its simple non-
parametric definition as a point on a surface with local radius and tangent-normal frame,
is much more straightforward to manipulate than Pedersen’s decals. Such decals can also
be generated automatically and controlled algorithmically. Below I will consider a variety
of interaction techniques, including a deformation tool and surface vector graphics, as
well as decals with interior holes to reduce distortion, and experiments with decal textures
on animated (implicit) surfaces, including those undergoing topological change.

4.6.2 Decal Parameterizations

In my interactive texturing system, a decal is defined by a square region in parameter
space surrounding a seed point p on the surface. Unless otherwise noted, the parame-
terization in use is approximate normal coordinates generated via the DEM or one of
the DEM variants we have considered. However, I will refer to the parameterization in
generic terms as there is no requirement that it be derived from normal coordinates.

The decal support region is the set of vertices within an approximate geodesic distance
of r+δ, where δ is the largest inter-neighbour distance or mesh edge length. This ensures
that the disc of radius r is fully contained within the decal, and hence all vertices of
any face overlapping the decal are parameterized, avoiding any clipping. To transform
the decal to the standard normalized coordinate system used for texture mapping, the
parameter values are scaled by 1/

√
2r and translated by (0.5, 0.5), so that the “geodesic

square” inscribed in the disc lies at [0, 1]× [0, 1] in parameter space.
Since my prototype interface is based on triangular meshes, the decals are stored

as local parameterizations of portions of the mesh, similar to [Praun et al. 2000]. This
approach is highly interactive. Decal update times scale roughly linearly with the number
of point samples, and are independent of other decals. On a 1.6 Ghz laptop, the ExpMap
parameterizations in Figures 4.7a and 4.7c are computed at 121 and 362 fps (4.7a has 4.4
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times as many points). User interface overhead reduces visual update times to 31 and
78 fps, respectively.

All decals are dynamically composited at each frame using the alpha blending and tex-
turing mapping hardware found on commodity graphics hardware (Figure 4.21a). More
complex compositing models can be implemented with programmable GPUs. Note that
dynamic compositing may involve the storage and rendering of hundreds of decals, which
is acceptable for interactive editing but less so if many decaled objects are part of a com-
plex scene. To increase rendering efficiency, or for compatibility with existing rendering
pipelines, decals could be baked into a global parameterization or octree texture.

Figure 4.21: Three overlapping semitransparent decals are composited in (a, top). A
selection region is used to blur the blue decal (a, bottom) while leaving the red and green
decals unchanged. In (b), the two decals inside the selection region are baked into a new
decal which has been pasted back onto the surface several times. In (c), a lattice tool is
used to deform the decal. A surface vector line with an endcap is created between the
control points in (d,top) by rendering a 2D line into an automatically-generated decal.
Surface curves can be rendered using a set of vector lines (d,bottom). The underlying
decals are shown as checkerboards. In (e), the decals on two separate implicit surfaces
are automatically updated when the surfaces are blended.

4.6.3 Interaction Techniques

The goal of my decaling interface is to make 3D surface texture design as fluid and
straightforward as 2D vector graphics and image compositing is with software such as
Adobe Illustrator. This is accomplished by hiding all aspects of surface parameterization
in the texturing interface. Each decal is an independent scene object in the system, with
a simple layer order to determine the decal compositing sequence. The artist interacts
with decals, rather than the underlying parameterizations.

The artist manipulates decals in our interface with a simple 3D widget (Figure 4.21b,top).
The decal is moved by dragging the center point across the surface, which is implemented
via ray-surface intersections. The decal orientation can be controlled by dragging on or
near the yellow circle, and the radius modified by dragging the outer green point towards
or away from the decal center.



Chapter 4. Representing Regions on Surfaces 81

Curves drawn in screen space can also be projected into decals and used to control
2D image processing operations such as blurring (Figure 4.21a). To map the vertices
of the curve ’lasso’ into the decal, we must between the 3D surface and 2D parameter
space for points not in the initial point set. A 2D parameter u can be mapped to 3D q
using barycentric interpolation in the 2D triangle containing u (a Delauney triangulation
must first be computed for point sets). Mapping from 3D q to 2D u would ideally be
done by adding q to the point set and recomputing the parameterization, however this is
relatively expensive. A quick approximation is to propagate the parameterization from
the nearest neighbour to q.

I also experimented with dynamically compositing multiple decals into a new decal,
allowing operations like copy-and-paste to be implemented (Figure 4.21b). The above
curve-mapping is used to project the lasso into each underlying decal, but we also must
generate a decal that fully contains the lasso, which is used as the target of the composit-
ing operation. In general, we can generate a decal which covers a set of points {pi} by
growing outwards from a seed point until all pi have been reached. To contain the lasso,
we determine the seed point by projecting the center of the 2D lasso bounding box.

Decal Deformation

Figure 4.22: Decal deformation. In (a), the decal image is too small to cover the eyeball.
Using the lattice deformation shown in Figure 4.21 results in a stretched pupil (b). Placing
extra constraint points around the pupil (c) produces the desired result (d).

It is often useful to be able to deform a decal, either to match image features to
surface features, or to correct for some unwanted distortion. Image deformations can
be applied to the texture, however this approach is non-interactive for high-resolution
images and limits texture re-use. Instead, we deform the decal parameterization. If
the image deformation ω is desired, then the inverse deformation ω−1 must be applied
to the parameterization. Since deformations based on the point samples may exhibit
frame-incoherence, a functional space deformation is used. To reduce the likelihood of
foldovers, we construct a deformation with infinite support.

Our deformation tool is based on C2 variational scattered-data interpolation, also
known as thin-plate splines or radial basis functions. A set of point constraints between
sources (u, v) and destinations (u′, v′) is created by projecting the 3D handles into 2D.
Two standard 2D thin-plate splines are fitted [Turk and O’Brien 1999], wu which maps
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(u′, v′) to the corresponding u values, and wv which maps to the v values. The warp
function w = (wu, wv) is then evaluated for each point in the parameterization. Since
the variational solution is based on point constraints, both lattice-style deformation (Fig-
ure 4.21) and feature alignment (Figure 4.22) interfaces can be implemented using this
technique.

Surface Vector Graphics

Figure 4.23: In (a), a vertebra model is extracted from a volume dataset and annotated
using decals. Though the surface is quite rough, there is little distortion in the text. In (b),
the vertices of a screen-space stroke (top) are projected onto the surface and connected
with vector lines. The stroke is continuous across occluded regions (bottom).

Decals can be used as canvasses for standard 2D vector graphic elements. For ex-
ample, a geodesic line element can be created between two points by generating a decal
originating at one point with a radius equal to the geodesic distance to the second point
(Figure 4.21d). If the decal is relatively un-distorted, uniform line width can be main-
tained by scaling linearly based on the decal radius. Lines across regions of widely varying
curvature can be subdivided into multiple decals to reduce distortion.

These geodesic line elements can be used as a building block for other surface vector
elements. As an example, arbitrary screen-space curves can be ’painted’ onto the surface
by projecting the 2D vertices onto the surface via ray-intersection and then connecting
them with line elements (Figure 4.23b). One advantage of this approach is that portions
of the surface which are occluded can still be painted, unlike the projective texturing
found in 3D painting tools.

Decals can also be used to efficiently map text onto 3D surfaces, as shown in Fig-
ure 4.23a. In this case the entire string of text is rasterized into a single decal. Cipriano
et al. [Cipriano and Gleicher 2007] alternately render each character into a separate
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decal, and then layout the characters along 3D space curves. That same work also uses
DEM decals to implement a variety of iconic labeling strategies on molecular surfaces,
each of which is essentially a surface vector graphic.

Partial Decals

Figure 4.24: In the case of a relatively smooth surface with a high-frequency feature, the
decal is significantly distorted (a). By halting the vector propagation based on curvature
magnitude, a hole is created as the decal passes around the feature (b). The distortion
behind the feature is also avoided (insets).

Like patchinos [Pedersen 1996], DEM-based decals become highly distorted when
passing over large protrusions on an otherwise relatively flat surface (Figure 4.24a). Ped-
ersen noted that this situation could be avoided if the patchino contained a hole which
passed around the feature. His system could not support this because the patchino
optimization procedure required a complete mass-spring mesh, however it is trivial to
implement with DEM decals.

To create partial decals, the unwanted points are removed from the neighbourhood
graph used in the Dijkstra-based front-propagation algorithms, and hence are simply left
unparameterized. The DEM then simply passes around the “hole” in tangent space, as
was discussed at length in Section 4.4.4. In the interactive tool we simply halt the front
propagation at points whose absolute Gaussian curvature is larger than a user-defined
threshold (Figure 4.24b). Other alternatives could include halting at creases, or based
on boundaries painted by a user.

Surface Deformation and Animation

Most texture-mapping schemes assume that the underlying surface is either completely
static, or if deforming, has a fixed mesh topology. Significant surface deformation or
topology change requires re-assignment of parameter values, at which point the current
texture must be projected from the old to new parameter-spaces. Both these steps - re-
parameterization and texture projection - are non-trivial, and it is particularly difficult
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to transfer texture between parameterizations without introducing frame incoherence.
Even handling simple remeshing can be problematic.

Our DEM decals are relatively stable under remeshing (Figure 4.7), and as the decal
parameterization is automatically generated, can easily be recomputed after the surface
deforms or changes topology. The only complication is that the seed points must ’track’
the changing surface. This can be implemented in a variety of ways, the simplest being
to project each seed point onto the nearest surface point at each frame. Using this
strategy, decals tend to flow onto the new surface in a consistent and predictable manner
(Figure 4.25).

If the surface has underlying structure, for example if it is generated based on a hi-
erarchical volumetric model, we can also ’bake’ the seed point into the local coordinate
frame of a particular node. This approach is particularly effective for texturing hierarchi-
cal implicit surfaces [Wyvill et al. 1999; Schmidt et al. 2006]. Of course, an artist could
also manually keyframe the parameters of a moving decal.

High distortion in the decal parameterization can introduce noticeable frame incoher-
ence, as the parameterization is likely to “pop” from frame to frame. The popping occurs
because the sampling rate is too low in the distorted regions, so denser and more regular
sampling can help to some extent. Upwind-averaging and normal smoothing 4.3.3 can
also significantly improve continuity between frames.

Figure 4.25: The existing set of decals used to texture a dog model (a) are automatically
updated when the ears are rotated and horns added (b). No manual adjustments of the
decals were performed. In (c-e), frames are shown from an animation of two implicit
surfaces blending, where each surface is textured with lapped decals. The top row shows
the lapped textures, the bottom shows the same decals with a checkerboard texture. The
decals smoothly flow into the blending region, and appear to slide together in the video.
Only the decals covering the portion of the changing surface are affected, decals on the
far sides of each object are stationary.

4.6.4 Results

Combined with a digital camera, the decaling tool described above provides a quick
and easy-to-use interface for texturing 3D models. Using an existing model and a few
snapshots, the dog in Figure 4.26 was composited in a few minutes. The base fur texture
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was generated by distributing fur decals across the surface, essentially creating a lapped
texture [Praun et al. 2000].

The textures for the gremlin model (Figure 4.26) were taken from a variety of sources,
including photographs of a frog, a painting, and the author. The images were segmented
and re-colored using image-processing software, and then pasted onto the surface. Many
of the textures are re-used multiple times. For example, each finger and toe uses the
same set of decals, although they are deformed to better fit the particular geometry.

Figure 4.26: This gremlin model (left) was textured using 19 different images cut out of
various photographs and then manipulated using 2D image editing software. The texture
consists of 392 decals, although only 78 were placed manually. The 6 images used to
texture the hand are shown. For the dog model (right), textures were taken from the two
source images shown. Generating the lapped base fur texture takes from a few seconds to
a few minutes, depending on the number of decals and the sampling rate of the underlying
surface. The eyes, nose, and extra fur textures take only a minute to position. The extra
fur textures (and the fur on the edge of the eyes) help break up the semi-regularity of the
base texture, creating a much more compelling result.

An example of modeling a real-world object is shown in Figure 4.27. A rough 3D
model was generated using sketch-based modeling software, and then 22 snapshots of the
clay statue were taken. A base texture was generated using the lapping technique, and
then relevant features were cut out of each image and attached to the model. Texture
placement was very quick, the total time including taking photographs and cutting out
the relevant features was approximately an hour. However, low lighting conditions and
“automatic color balancing” hardware on the digital camera resulted in each photograph
(and its feature textures) having a slightly different color balance from the base texture
and eachother. Manual color balancing took an additional two to three hours.

4.7 Conclusions

In this chapter I presented the Discrete Exponential Map, a novel method for constructing
an intrinsic coordinate system on a 3D surface. Although the original DEM algorithm had
some limitations in the types of surfaces it could handle, the upwind-averaging and normal
smoothing extensions I presented significantly improved DEM robustness. I evaluated
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Figure 4.27: A clay elephant statue (left) was modeled using sketch-based implicit-surface
modeling software. Then, a lapped base texture and 25 feature textures were extracted
from 22 images taken with a digital camera and composited on the surface. Photography,
image creation, and texture positioning was completed in under an hour.

several properties of the DEM, and performed some initial empirical explorations which
indicate that at least on the sphere, the DEM appears to converge to analytic results.
I also compared to conformal parameterization and found that the geometric rigidity of
the DEM is likely to be preferable for Part-based modeling.

Given this geometric component, I described a surface texture design interface based
on decals, which can be interpreted as texture Parts. This interface provides designers
with high-level tools to composite and manipulate decals, hiding all aspects of the under-
lying parameterization. This is a fluid and efficient way to texture surfaces, particularly
for those who are not skilled at texture painting. Even for texture painters, the ability
to easily mix-and-match from existing textures makes decaling a useful addition to the
texture design toolbox.

While I will focus on using the DEM as a basis for 3D surface Parts, there are a
wide range of other applications that have yet to be explored. The local 2D coordinate
system provided by the DEM has many potential applications in geometry processing,
as a generalization of the venerable vertex one-ring. For example, I have recently shown
how to use the DEM to compute approximate conformal parameterizations of point
sets [Schmidt and Singh 2010a].

Clearly a more sound theoretical basis for the DEM would be useful if it is to be used
as a component in other algorithms. In particular, more robust bounds on the radius
of a DEM would be useful. In Section 4.2 I did mention that on continuous surfaces, a
bound is known. However, upwind averaging and normal smoothing essentially sacrifice
some normal coordinate accuracy for increased robustness across curvature variation. For
most applications of parameterized local regions, this is a good trade-off - the method
of Brun [Brun 2008] reproduces the cut loci much more accurately, and it is clear from
figures there that these discontinuities would be problematic for our application. So it
would be useful to know how these intrinsic smoothing techniques affect the location of
cut loci.

Another interesting question is whether the DEM can be extended to arbitrary di-
mensions. This is non-trivial, as the rotations used to align tangent spaces are much
more complex to compute in higher dimensions [Mortari 2001]. But robust local param-
eterizations of low-dimensional manifolds embedded in high-dimensional spaces would
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have a host of applications not only in computer graphics, but also in computer vision
and machine learning [Brun 2008].



Chapter 5

A Geometric Differential
Representation of Part Shape

Some material in this chapter is derived from the articles “Drag-And-Drop Surface Com-
position” and “Drag, Drop, and Clone: An Interactive Interface for Surface Composi-
tion” authored by Ryan Schmidt and Karan Singh [Schmidt and Singh 2010b; Schmidt
and Singh 2010c]. The text and images reproduced here are used with permission from
my co-author.

5.1 Introduction

Recall that in Chapter 3 I separated the description of a Part into two components - a
surface region U and a shape representation relative to that region, V = E(U). Assuming
we are given an initial Part shape V0, our goal is then to encode V0 such that it can
be reconstructed by E relative to any U . To accomplish this decoupling, we have three
potential geometric entities which can be utilized - the anchor point p, the boundary
curve ∂U , and the surface patch U . For height-field features U is a natural choice, but
most features of interested are not representable by 2D functions. If the feature is to
be attached by some sort of world-space geometry blending, the frame transformation
defined by p may be suitable. However, as I explained in Section 3.6.2, I will build
my representation on ∂U as I believe it supports the most suitable trade-off between
E-Capacity and E-Rigidity.

Hence, my goal is is to encode V relative to the boundary loop ∂V , so that given
a new boundary curve we can decode V in a way that naturally leads to ∂V = ∂U .
Recent variational approaches to shape deformation [Alexa 2003; Sorkine et al. 2004;
Lipman et al. 2005; Botsch and Sorkine 2008] are an obvious way to approach this
problem. However, as I will discuss in Section 5.8, variational techniques introduce several
constraints on both the types of shape that can be represented, and what controls can
be provided to artists to manipulate those shapes.

Many of the limitations of these variational methods can be tied back to their de-
pendency on global energy minimizations. An alternative is to represent the deforma-
tion geometrically. for example, the WIRES method [Singh and Fiume 1998] and vari-
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ants [Milliron et al. 2002] can be easily adapted to this problem. However, as I will show,
straightforward application of existing geometric deformations leads to undesirable shape
distortions. Hence, in this chapter I will generalize WIRES-style relative-deformation ap-
proaches, and then show how a specific type of incremental relative deformation greatly
improves the preservation of Part shape. This deformation is in some sense a single
long WIRE wrapping around the surface, so I will call it a COIL. I will show that
COILS produces results similar to the Rotation-Invariant Coordinates linear variational
deformation [Lipman et al. 2005], but trades some smoothness for a variety of practical
advantages.

Once the COILS deformer is defined, it can be combined with the DEM from the
previous chapter to realize my general Part definition. In Section 5.9 I will put this
Part to use, in a simple mesh drag-and-drop tool that essentially allows an artist to
first extract a Part from one mesh, then procedurally move it to another. Although
this tool simply “bakes” the Part into the second surface, and hence does not build a
procedural hierarchy, it already demonstrates many of the possibilities of Part-based
surface modeling.

5.2 Relative Deformations

My deformation technique is motivated by the simple intuition that if a rigid transfor-
mation maintains relative positions between points p and q, then a deformation that is
“as rigid as possible” should attempt to do the same. Since some flexibility is desired,
the goal is to maintain rigidity at each point with respect to some region Ω. Many such
deformation techniques take Ω to be a local neighbourhood. In this section I will explore
the use of more general domains.

The first step is to construct a representation of p which is invariant to rigid trans-
formations. Given some other point q with arbitrary orthonormal coordinate frame Fq,
p can be expressed as q + Fqv(p,q), where v(p,q) = F -1

q (p - q) is a vector in the
frame Fq (here multiplication by a frame implies a 3D rotation with the frame vectors
as rows). Applying a rigid transformationM results in a new point q̂ =Mq and frame
Fq̂ =MFq, from which we can compute a new position p̂q:

p̂q = q̂ + Fq̂v(p,q) (5.1)

We can now consider integrating Equation 5.1 over a spatial region Ω. Given an arbitrary
weighting function w(p,q), we can construct a differential representation of p:

p̂ =

∫
q∈Ω

w̃(p,q)p̂q dΩ w̃(p,q) =
w(p,q)∫

q∈Ω

w(p,q)dΩ
(5.2)

Since (p̂ - q̂) =M(p - q), this representation of p is invariant to rigid transformation. In
the case of non-rigid deformation of Ω, each q undergoes a unique rigid transformation
and “predicts” a different point p̂q. Equation 5.2 defines p̂ as the weighted superposition
of these predictions. If w(p,q) is continuous, a smooth deformation of Ω will result in a
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smooth spatial deformation as p varies. Note that although Equation 5.2 can be inter-
preted as defining a spatial deformation, the weight and displacement-vector functions
also effectively define an encoding of p, which can be reconstructed relative to any Ω.

Many relative deformation techniques can be expressed in this framework. For exam-
ple, if Ω = {qi} is the one-ring neighbourhood of mesh vertex p and δp =

∑
wi(p - qi) is

the Laplacian coordinate, then the Laplacian deformation framework [Botsch and Sorkine
2008] defines p as

p̂ =
∑

wiq̂i + Tpδp =
∑

wi(q̂i + Tp(p - qi)) (5.3)

where wi can be any of a wide range of weights, the most popular being the cotangent
weights [Desbrun et al. 2002]. Equation 5.3 is simply Equation 5.2 integrated over a finite
domain, with v(p,q) = p - q and Fq̂i

= Tp, a constant rotation which must somehow be
estimated. Of course, since most qi are unknown, a variational approach is necessary to
solve for all vertices simultaneously. To support direct evaluation, Ω must be known a
priori. For example, a Bezier patch is a deformation of a plane, with Ω the given control
points, v = 0, and w the Bernstein polynomials.

Figure 5.1: In (a), a point p is represented by a set of displacement vectors relative to
points qi ∈ Ω. When Ω is deformed (b), the new point p̂ is defined by a weighted sum of
transformed displacement vectors. Examples c-e compare closed-form integral solutions
(thin green lines) with discrete solutions (thick red lines) based on regular samplings of
Ω (black line).

Curves are widely recognized as an efficient and intuitive control handle for deforma-
tion [Singh and Fiume 1998]. To deform p relative to a curve C, we set Ω = C and use
an inverse-distance weight:

w(p,q) =
1

d(p,q)k + ε
(5.4)

where d is either a Euclidean or geodesic distance function. If C is composed of linear
segments, a closed form solution to Equation 5.2 can be computed for k = 2, but in
general an analytic solution will not be available, so we must approximate C with a
discrete sampling Ω = {qi}. Equation 5.2 is then rewritten as

p̂ =
∑

Ω

w(p,qi)∑
Ω

w(p,qi)
(q̂i + Fq̂i

v(p,qi)) (5.5)

which generalizes the WIRES deformer [Singh and Fiume 1998] and alternative recent
formulations [Kanai et al. 1999; Milliron et al. 2002; Yu et al. 2004]. Equation 5.5 can also
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be cast as a Monte-Carlo solution to Equation 5.2, which aids in interpreting the effects of
different sampling and weighting strategies. For example, random sampling exhibits the
expected reduction in variance, while regular sampling provides a smooth approximation
(Figure 5.1). Generally we are concerned with fixed point-sampled geometry, and and
hence must counteract sampling bias by modulating our weighting scheme. For example,
to correct for non-uniform sampling of C, we scale w(p,qi) by

∑
qj∈N(qi)

|qi - qj|, where

where N(qi) is the connected neighbourhood of qi.
We can apply Equation 5.5 to deform a sampled surface S = {pi} based on a 3D

deformation of the open boundary curve ∂S. Figure 5.2b demonstrate the limitation of
this approach, namely that points distant from ∂S undergo significant distortion. This
is easily understood by re-factoring Equation 5.5 into the sum of a weighted centroid
and an average displacement vector. For points near ∂S, weight is concentrated near the
closest point on the boundary, and hence the centroid is relatively static. For samples
further from the boundary, however, weight is distributed more evenly over ∂S, pulling
the centroid downwards and causing vertical squashing.

Figure 5.2: Embedding the boundary loop at the base of the bunny mesh (a) in a cylinder
results in shrinkage using boundary-relative deformation (b). The COILS deformation
smoothly distributes edge distortion (mapped to red) away from the boundary (c).

5.3 COILS: A Geometric Differential Deformation

As is evident in Figure 5.2, the WIRES-like deformer preserved shape only in regions
near the boundary curve. The issue with that approach was that as p gets further from
the handle, the distance-based weights become more uniform, increasing the amount
of “pull” towards the center-of-mass of the boundary curve. This observation suggests
that we can better preserve the global shape by deforming each point relative to some
spatially-adjacent surface region Ω(p), such that the weighted centroid remains close to
p.

Remember that the deformation must still be driven by the boundary curve. If we
are to take a geometric approach, then intuitively the surface must “grow” out from the
boundary, as that is the only information that is initially available. Hence, conceptually
my approach is to slice the surface into thin layers propagating away from the boundary,
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and reconstruct each layer relative to the last. If we consider a front propagating along
the surface away from the open boundary, then each timestep defines a layer which can
be deformed relative to some upwind region(Figure 5.3), supporting a forward evaluation
from the deformed boundary. Since at each layer we are effectively applying the WIRES-
like deformer, I will call the resulting deformation a COIL.

An explicit layer segmentation would be cumbersome on arbitrary point sets, so I
will use the weight function w(p,q) to implicitly represent the front propagating away
from Ω. The first step is to determine an arrival time at each vertex on the mesh.
Assuming again that S will be deformed relative to its open boundary ∂S, arrival time
can be defined as the geodesic distance gpi

from ∂S to pi, approximated using Dijkstra’s
algorithm (Figure 5.3).

Figure 5.3: Conceptually, the bunny is sliced into layers defined by a front propagating
across the surface, away from the open base (a). The layer on the front (green) is defined
by the previous upwind layer (red). In practice the approximate geodesic distance from the
boundary (b) and a weight function (c) are combined to implicitly define a “smeared-out”
front at the green point (d). The product of this function on the mesh is then combined
with the inverse distance weight to define a combined weight function for the green point
(e).

One an arrival time is known at each vertex, we must select a set of upwind points
to represent the current front. To provide maximum rigidity the upwind region should
form a closed loop around the surface (see Section 5.7). Given an arrival time radius
ru, taken to be a small multiple (usually 2.1) of the average edge length, the front at
pi is approximated by the upwind band Ω(pi) =

{
pj : gpi

- ru < gpj
< gpi

}
. Because

we are operating on a discrete set of points, sampling variation will result in a discrete
front that changes from vertex to vertex. The effect of this ’popping’ is clearly visible
in the deformation. To mitigate this effect we can modulate the weights using a smooth
falloff field. This smoothing is effectively an adaptation of the “smeared-out” Heaviside
functions used in level set front propagation [Osher and Fedkiw 2003].

Given a function which smoothly falls off from 1 to 0, such as f(x, r) = max((1 -x2/r2)3, 0),
we define the upwind weight:

4g = gpi
- gpj

rn = min
i 6=j
|pi - pj| (5.6)

warr(pi,pj) = f(4g, ru) (1 - f(4g, rn)) (5.7)

where the first term falls off away from the front and the second reduces the weight on
points whose arrival time is nearly the same as at pi (Figure 5.3c,d). This second term
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is necessary because gp may vary slightly between points which ideally would have the
same arrival time. This can cause biased sampling of the upwind region, which leads to
asymmetric deformation (Figure 5.4a-d).

As in all sampling solutions to integral problems, we must address the issue of sam-
pling irregularity. In the weighting formulation we have constructed so far, the deforma-
tion will be pulled towards regions of relatively higher sample density (Figure 5.4). To
counteract this, the weight can be modulated with a regularization factor which effec-
tively represents the surface area represented by p:

w4reg(pj) =
∑

Tk∈N(pj)

Area(Tk) w•reg(pj) = min
pk∈N(pj)

|pk - pj|2 (5.8)

The one-ring area weight w4reg works well on triangle meshes (Figure 5.4e-h), and w•reg
produces reasonable results when topology is unavailable. Hence, our final weighting
scheme is

wup(pi,pj) = warr(pi,pj)wreg(pj)w(pi,pj) (5.9)

Figure 5.4: In (a), point 4 is considered upwind to point 5 due to slight numerical dif-
ferences common on regular meshes (b), leading to highly biased deformation (c) that is
mitigated by the ramp-up term in warr (d). Irregular vertex density (e,f) cause similar
problems (g), largely corrected by our regularization weight wreg (h).

Note that pi is now deformed relative to other internal points, but transformed frames
are only provided at boundary samples. If we restrict Ω(pi) to neighbours pj whose full
one-ring neighbourhood is upwind, we will be able to estimate the necessary tangent
frames from the current mesh. However, I found that when taking this approach small
estimation errors tend to accumulate, resulting in catastrophic distortions. Instead I
normalize a linear blend of upwind-relative frames, Fp̂ =

∑
qi∈Ω(p) wiFq̂i

F -1
qi
Fp. This

approach is known to be sub-optimal, although an evaluation of different rotation com-
position techniques by Gramkow [Gramkow 2001] has shown that for small rotations,
the error introduced by this re-normalized linear blending is in fact very minor. I ex-
perimented with quaternion-based rotation blending and logexp matrix blending [Alexa
2002], and found that qualitatively the results were only slightly “stiffer” than the much
faster linear blend, so in my implementation I use the latter.
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On a related note, I found that when approximating geodesic distances using Dijk-
stra’s algorithm, better results were achieved when the edge graph was determined using
Euclidean ε-balls, even if mesh connectivity is available. A graph based on one-ring con-
nectivity works well on regular meshes, but will generate geodesically out-of-order arrival
times on the semi-regular tilings in Figure 5.4. Likewise, initializing boundary neighbours
with exact distances to the loop polyline will avoid many pathological cases introduced
by irregular mesh topology.

5.4 Parameters and COILS

Since the COILS deformation is based on a geometric forward evaluation, the functions
w(p,q) and v(p,q) can be arbitrarily parameterized with procedural or hand-tuned
factors (such as painted weights), providing artists with extensive real-time control. Fig-
ure 5.5 demonstrates how parameterized deformation can be used in a variety of modeling
tasks.

One useful parameter is a rigidity factor which controls how strongly the shape of
the feature is preserved. There is an inverse relationship between desired rigidity and
the power k in the inverse-distance weight (Equation 5.4). A uniform rigidity multiplier
provides a simple control over how the boundary deformation propagates out into the
global shape (Figure 5.5a-c). Varying rigidity based on the distance to the boundary
enhances feature preservation (Figure 5.5d), while an initialization based on Gaussian
curvature allows stretching to be absorbed by high-curvature regions (Figure 5.5m-p).

Scaling is supported by adding a multiplier to the offset vectors v, which can also
be varied based on boundary distance, or any other factor (Figure 5.5j-l). We can also
tune how the shape is pulled towards or pushed away from the boundary, which roughly
translates into manipulation of the shape volume, by scaling ru, the upwind falloff radius
from Equation 5.7. Larger ru values mean that weight is distributed more uniformly over
the upwind region, causing pulling towards the boundary as in Figure 5.2b (although
much less extreme).

Transformation of boundary tangent-normal frames directly affects the local shape.
We include a bias frame FB, and a parameter α that controls interpolation between the
original frame and FB (Figure 5.5e-i,q-s). Boundary rotation is also useful for controlling
continuity when using the COILS deformer to attach a Part to another surface, as we
will see in later sections. A useful extension would be to allow direct manipulation of
some boundary frames, followed by smooth blending of the manipulated curves along the
frame, perhaps via a peeling interface.

5.5 Multiresolution and Hierarchical Extensions

While the complexity of the COILS deformer is less than O(N2), it is significantly higher
than linear. Experimentally, the size of the upwind ring is roughly O(log2N), so the total
cost is O(N log2N). Interactivity is greatly enhanced by pre-computing offset vectors
v and constant terms in wup at each point, and caching normalized weights as they
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Figure 5.5: Increasing the rigidity power k on the inverse-distance weight from 2 (b) to
3 (c) reduces the stiffness of a box bent across a 90◦ corner. Varying rigidity based on
the vertical height produces a flexible base with a stiff top (d), while applying a constant
rotation to the boundary tangent-normal frames can be used to create asymmetric shapes
(e,f). Interior bumps on a plane (g) squash together after an inverted bend (h), but do
not foldover, and rotating boundary normals in the vertical direction lifts them back up
(i). In a later example we will need to fit three dog heads onto a surface, but the neck will
be too large (j). Uniform scaling (k) followed by tuning of a blend between scaling factors
based on boundary distance (l) allows us to squeeze on all three. The base of a mushroom
shape (m) becomes distorted when bent (n), but increasing k from 2 to 3 flattens it out
(o), and varying k based on a curvature map (green in m) preserves the cap as well (p).
In another boundary frame manipulation, varying k with height controls the propagation
of a 90◦ boundary twist applied to a tall box (q-s).
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are generated. This requires O(N log2N) storage, further limiting scalability. Hence, I
propose the following multiresolution scheme.

The first step is to generate a smooth, low-resolution base surface BS by simplifying
S. We iterate rounds of edge-collapses and non-shrinking Laplacian smoothing [Taubin
1995], without any detail-preserving metric. Then for each p ∈ S the nearest point
q ∈ BS is found, Ω(p) defined as the k nearest connected base samples to q, and p
deformed using Equation 5.5. Essentially, S is an offset surface from BS , where the
displacement is defined by (approximately) integrating rotation-invariant offsets over a
local region of BS .

The above represents a detail surface relative to a lower-resolution base surface. This
approach can be seen as a generalization of the way in which multiresolution surfaces
represent the difference between two different resolution levels. There, a single detail
vector is stored on the base mesh for each high-resolution vertex [Zorin et al. 1997;
Kobbelt et al. 1998]. By (approximately) integrating over a local region, we improve
shape rigidity and reduce the likelihood of foldovers, while avoiding the computational
expense of more complex techniques such as displacement volumes [Botsch and Kobbelt
2003].

Some multiresolution examples are shown in Figure 5.6. Note that this approach
can be extended to multiple levels of detail, supporting multiresolution on arbitrary
meshes. However in the application described in Section 5.9 I only use one detail layer,
automatically applied whenever N > 2000.

Figure 5.6: By averaging multiple base-surface displacement vectors (a), an 11k bunny
mesh can be reduced to 1k vertices without a detail-preserving simplification scheme (b),
and the resulting deformation (c) is still of high quality. The deformation induced by
bending the base of a simplified tube mesh (d) remains smooth (e) and visually similar to
the full solution (f).
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Another issue with the COILS deformer, which I will discuss further in the next sec-
tion, is that the deformation is influenced by the shape of the geodesic iso-contours (the
“slices”) growing inwards from the boundary. This can be problematic in some cases,
such as in Figure 5.7, where the shape of the iso-contours causes the protruding features
to pull together. This situation could possibly be avoided by curvature-dependent front
propagation speed. However, since the COILS deformer can handle non-manifold inte-
riors, a more flexible approach is to segment the feature into discrete components and
reconstruct them in sequence, from the boundary inward.

In addition to reducing dependencies on the outermost boundary shape, this hierar-
chical approach offers higher internal rigidity, more control to the user, and opportunities
for parallelization. While Part determination could be driven by automatic segmenta-
tion algorithms, some user guidance will likely be desirable. While this hierarchical
deformation does have significant practical benefits, I have not explored this direction in
any great detail, and it has not been utilized to create any of the other results in this
section.

Figure 5.7: The shape of the upwind region is influenced by the boundary shape. In (a) the
iso-contours of the geodesic distance field are connected part-way up the bumps, causing
them to stick together as the base deforms (b). Segmentation followed by hierarchical
deformation produces a more intuitive result (c).

5.6 Limitations

As noted above, one limitation of the COILS deformer is that the geodesic distance
field is neither smooth nor continuous. This causes a variety of problems. The most
common problem this introduces is non-smoothness in the deformation. Figure 5.8a,b
shows such an example, where the irregularity of the boundary is clearly reflected in
the geodesic distance field, and hence in the deformation. Another issue visible in this
figure is that the geodesic isocontours again inadvertently connect semantically-disjoint
internal shape features, leading to a somewhat unintuitive deformed shape. In general,
there is no guarantee that the geodesic isocontours will be aligned with any internal Part
boundaries - instead they are largely determined by the shape of the outer boundary loop.
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Another problem occurs if the interior surface contains holes, of both the topological
and manifold variety. In these cases the geodesic distance will branch when the feature
is first encountered, and then later merge together. On either side of this boundary, the
upwind neighbourhoods are completely disjoint, so the surface can tear at this boundary
(Figure 5.8c,d). One way to reduce this effect is to encode each point relative to all
upwind fronts at the given arrival time, even those which are disjoint. This resolves
tearing problems (Figure 5.8e) but can also lead to connections between semantically-
disjoint Parts, where a significant deformation of the Part is in fact desired1.

One way to resolve most of these problems would be to generate a smoother field
from which to derive arrival times. Curvature-dependent Level-set viscosity solutions
are often used to smooth out discontinuities in the front propagation literature, and
could possibly be adapted here. Another possibility would be to attempt to incorpo-
rate geometric smoothing. An interesting way to approach this is to note that, similar
to Rotation-Invariant Coordinates [Lipman et al. 2005], the COILS reconstruction of
tangent-normal frmaes does not depend on the positions. Hence, the frame reconstruc-
tion can be pre-computed and then post-processed to reduce discontinuity, for example
via local smoothing. As we saw in the normal-smoothed DEM (Section 4.3.3), even sim-
ple neighbourhood averaging can have a significant impact. However, neither of these
approaches will resolve the issues with topological branching. A more robust alternative
may be to compute a variational harmonic interpolant [Xu et al. 2009a] using the geodesic
gradients as a guidance field, or perhaps a MLS-based scalar field [Jin et al. 2009] with
geodesic-distance constraints.

Figure 5.8: An irregular boundary leads to high-frequency variation in the geodesic dis-
tance field (a), which is reflected as non-smoothness in the deformed surface (b). Topogi-
cal branching and merging (c) can lead to tearing along the merge boundaries (d). These
tears can be resolved by encoding relative to all disjoint upwind neighbourhoods (e).

5.7 Other Upwind Deformation Domains

The COILS deformer involves a relatively complex choice of upwind neighbourhood. A
reasonable question is whether there are simpler alternatives that might be more effective.

1In my experience, this rarely occurs in Partbased modeling scenarios. Generally rigid Part shapes
seem to be much more preferable, and when extreme deformation is desired, the artist would rather
apply it as a controllable post-process than to have it determined by the boundary deformation
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In addition to the WIRES-style boundary-relative deformation, I have explored three
other alternatives, which are compared visually in Figure 5.9.

Local Upwind Neighbourhood An obvious choice would be to simply encode p
relative to the upwind members of its mesh one-ring. This approach leads to extreme
discontinuities, but is is essentially an approximation to the upwind portion of a geodesic
disc. Sampling a larger disc improves smoothness, but the boundary deformation is
clearly represented in the deformed Part (Figure 5.9b). Essentially, each point can only
“see” a portion of the boundary loop, and so is primarily determined by that region of
the boundary, with the overlap between neighbourhoods serving mainly to smooth the
result.

All-Upwind Surface Another simple strategy is to encode p relative to the entire
upwind surface. If we consider the centroid/displacement-vector factorization, then we
see that the centroid is now the center-of-mass of the currently reconstructed surface.
Hence, as in the boundary-relative deformation, some squashing of the shape is apparent.
Otherwise the All-Upwind method is very rigid, even more so than COILS, but a practical
drawback is that it is O(N2).

Random Sampling of All-Upwind If the All-Upwind scheme is meant to approxi-
mate an integration over the upwind surface, then we can always approximate the ap-
proximation by using fewer samples. In the terms of Monte-Carlo integration, this should
increase the variance or ’noise’ in the approximation. This is exactly what we observe
- in Figure 5.9d the deformed shape is visually similar to Figure 5.9c at larger scales,
however there are higher-frequency variations in the shape.

5.8 Comparison with Variational Techniques

The underlying principle behind many recent works in variational shape modeling is that
the initial surface-with-boundary is converted into a differential representation, with fixed
boundary constraints. My COILS deformer takes much the same approach. However,
the difference with variational methods is that they then define the surface as the global
minimum of some energy function which describes how the variational information and
boundary constraints should be integrated to recover the 3D surface.

The main complexity of variational deformation methods is that finding the global
minimum of an energy function requires complex numerical optimization techniques,
which are often very computationally intensive. Simple quadratic least-square energies
lead to linear solutions, which can then be used in interactive scenarios by utilizing pre-
computation techniques such as factorizing fixed system matrices [Botsch and Sorkine
2008]. These linearized deformations can have difficulty handling large rotations, so more
robust non-linear techniques have been developed [Botsch et al. 2007; Lipman et al. 2007],
however they are significantly more expensive.

One drawback of energy-minimization approaches in general is that, compared to
geometric methods, they are much more difficult to parameterize, as any additional pa-
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Figure 5.9: A point p can be reconstructed relative to a variety of upwind deformation
domains Ω, including (a) the surface boundary, (b) a local upwind neighbourhood, (c) the
entire upwind surface, (d) random sampling of the upwind surface, and (d) a thin upwind
band (the approach taken in my COILS deformer).

rameters must be expressed as changes to the energy function. It is of course desirable
that any algorithm produce plausible results with the default parameter settings, and
with the COILS deformer we have found that this is generally the case. However, Zim-
mermann et al. [Zimmermann et al. 2008] found that for the same handle configuration,
subjects in a study disagreed on which of two deformations was expected. This suggests
that there is probably no ’best’ energy function or set of parameters for a particular
deformation scenario; artists will inevitably want to tweak the results.

In general, parameterizing an energy function is non-trivial. In production environ-
ments, complex procedural controls are often authored using visual programming tools.
Such parameters may not even be differentiable, so integrating them into an energy min-
imization means resorting to expensive and non-smooth gradient-free methods. Even if
the parameters can be linearized, they are problematic for linear variational techniques
because these methods achieve interactivity via pre-computation techniques such as fac-
torizing fixed system matrices. Tuning a parameterized energy function would generally
require expensive pre-computations to be repeated, which would be very detrimental
to interactivity. It should also be noted that even determining how to change an en-
ergy function to provide a specific artistic control is more difficult than in geometric
approaches. For an example of integrating material stiffness controls into a variational
deformation, see Popa et al. [Popa et al. 2006].

Most variational techniques also require relatively “clean” mesh topology, and could
not handle the non-manifold polygon soups that are common in many practical appli-
cations. A notable exception is Sumner et al. [Sumner et al. 2007], who bridge the
gap between surface and spatial deformation by constructing a spatial 3D graph from an
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arbitrary point set, deforming the graph based on a nonlinear optimization, and then gen-
erating a spatial deformation by blending transformations of the graph nodes. Because
COILS is geometric and based only on differences between points, it can be implemented
to be independent of mesh topology without requiring additional analysis of the point
set, and hence even applied to surfaces made of disjoint components.

A final assumption of most variational techniques is that the domain of the deforma-
tion - the mesh graph - has no interior holes. This is because variational approaches are
essentially interpolations of the boundary constraints across the interior, modulated by
the differential information. So, for example, the boundaries of the eye cut-outs common
in head meshes must also be fixed in 3D2. This is not possible in our Part shape rep-
resentation - until the shape has been reconstructed, we have no way of pre-determining
any 3D boundaries except those lying in U . As we will see, the COILS deformer handles
interior holes much more effectively.

5.8.1 Comparison with Rotation-Invariant Coordinates

A variety of linear variational mesh representations have been developed, see Sorkine &
Botsch [Botsch and Sorkine 2008] for a recent survey. One popular approach is based
on the vertex Laplacian, defined in Equation5.3. One issue with the Laplacian vector,
though, is that it is defined in world coordinates and hence must be rotated using a
tertiary algorithm. Lipman et al. [Lipman et al. 2005] provided a suitable rotation
technique, based on encoding the tangent-normal frame at each vertex relative to those
of its neighbours. This approach, known as Rotation-Invariant Coordinates or RIC,
encodes the surface such that it can be reconstructed from a set of boundary positions
and normals, exactly as in the COILS deformer. Although I will not go into details
here, RIC involves two linear solves. First the boundary normals are used to solve for an
orientation field that smoothly varies over the surface. Then the differential Laplacian
vectors are rotated using this field, and the Laplacian reconstruction of Sorkine et al.
[Sorkine et al. 2004] is applied to find the deformed shape.

I implemented RIC and compared it with COILS in the context of the Part-based
geometry drag-and-drop tool I will discuss in Section 5.9. In this tool, the Part shape
is deformed to fit any new Part region, and in addition the boundary frames are often
rotated either in towards or out away from the surface, to preserve continuity across the
Part boundary. In cases where the boundary is significantly deformed from its original
configuration, or the boundary rotation is significant, I have observed that RIC can
break down, producing results which are much less desirable than the COILS deformer
(Figure 5.10a).

In these case the new mesh normals do not deviate significantly from the desired
RIC-estimated normals, but rather the mesh is simply too deformed. This is a difficult
situation to handle, but I did find that one option was to manipulate the boundary
orientation constraints in the following way. Consider the axis formed by the line from

2Rather than fixing internal boundaries in space, it may be possible to constrain the edge lengths
around the hole boundary. This still does not guarantee the sort of rigidity we would desire, but it may
at least avoid catastrophic failures
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Figure 5.10: Dropping a cow Part onto a torso while maintaining boundary continuity
involves too severe of a bend for rotation-invariant coordinates (a). Optimizing boundary
frames to minimize distortion (purple) reduces boundary continuity (black arrow) but pre-
serves interior shape (b). The COILS deformer concentrates distortion near the bound-
ary, allowing for continuity with more interior rigidity than RIC (c). The least-squares
optimality properties of RIC allow it to outperform the non-smooth COILS deformer on
high-resolution surfaces (e,f), while the COILS deformer is more robust at preserving the
shape of interior holes (g-i).
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vertex pi+1 to pi−1. We can rotate the constraint frame at boundary point pi, and
efficiently find a new solution via back-substitution. The optimal global rotation angle θ
is found by minimizing the total area deformation of the mesh triangles:

arg min
θ

∑
i

[(
Aorig
i /A

def(θ)
i − 1

)2

Aorig
i

]
(5.10)

where Ai is the area of triangle Ti in the original or deformed configuration. Note that a
more refined solution can be found by optimizing for per-vertex angles, but this approach
is too expensive for interactive use. The net result of this boundary angle optimization is
a significant improvement in the deformed shape, but at the cost of a smooth transition
at the shape boundary (Figure 5.10b). Note that the COILS deformer has no problem
maintaining this boundary continuity while also actually appearing to provide a higher
level of internal shape rigidity (Figure 5.10c).

One significant benefit of the RIC deformer is that it produces smooth deformations.
This is particularly evident on large, high-resolution smooth surface regions, as in Fig-
ure 5.10d,e. As we have seen, the COILS deformer lacks this smoothness. Similarly,
because it globally solves for a smooth orientation field, RIC transparently handles the
internal topological holes and handles that introduce tears into the geodesic distance field
used in COILS. As I discussed in Section 5.6, this is a major problem for COILS, although
it can be addressed at the cost of coupling the deformation of geodesically-disconnected
regions.

Another difference I noted between geometric and variational methods is their han-
dling of internal boundaries. Figure 5.10f shows a standard case - an eye cutout on
a face mesh. In the RIC deformation the interior hole can be arbitrarily distorted,
while the COILS deformer maintains rigidity (Figure 5.10g,h). The issue here is that
the local weights used in RIC (and most other variational techniques), which are meant
to approximate the mean-curvature normal, are mathematically invalid at boundary ver-
tices [Schneider and Kobbelt 2001]. In variational deformations these internal boundaries
would generally be fixed, but when using RIC to reconstruct a Part at an arbitrary lo-
cation, the location of internal boundaries is unknown. One possibility would be to
introduce very stiff edge-length constraints on the internal boundary edges, however it is
unclear that this would sufficiently constrain the solution.

5.9 A Geometry Drag-And-Drop Tool

Re-use of existing 3D modeling assets is a challenging problem in freeform shape design,
in large part because existing 3D surface models lack any sort of Part decomposition.
An interesting question is whether or not we can impose Part structure on these existing
models a priori. If the Parts of a surface could be reverse-engineered, they could easily
be edited and re-combined in novel ways.

In this section I will explore this problem by developing a Part-based modeling
interface for geometric drag-and-drop. This tool allows an artist to manually separate
a region of surface from an existing model and re-use it as a procedural Part. To
accomplish this, we will first need to infer the portion of surface that could have been
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“underneath” the Part. Once the underlying surface is known, the selected patch can
be decomposed into a Part region and shape. This Part can then be interactively
repositioned on any other surface region, much like the texture Parts of Section 4.6.
To the artist, this simple interface allows Parts of unstructured mesh surfaces to be
dragged-and-dropped in the same way as one would with a 2D pixel editing tool like
Photoshop [Adobe Systems Inc. 2007b].

Figure 5.11: To drag the mannequin face to a (flattened) bunny, a region-of-interest
is first selected. The boundary loop is embedded in the plane (1), then a planar mesh
is generated (2) and deformed to smoothly fill the hole (3). The drag is completed by
mapping the boundary loop to the target region via a local parameterization (4), and then
the ROI is deformed relative to the new boundary (5).

Figure 5.11 provides an illustrative overview of my approach. The artist first de-
marcates the Part surface by enclosing it within a boundary loop, created by sketching
sequential curve segments on the surface. The Part surface V is then removed from the
mesh, leaving a hole with boundary ∂V . The boundary ∂V is now embedded in the plane
and triangulated, creating a planar mesh which is then deformed to precisely fit ∂V , thus
spanning the hole. Note that this procedure is independent of the interior topology of S.
Next this fill surface is parameterized using the DEM and ∂V is embedded in it, defining
the 2D Part region. The Part shape is then defined by generating a COILS encoding
of V relative to ∂V . The Part region can now be transferred to another surface by first
finding a local DEM parameterization, and then mapping the 2D Part boundary into
it. Finally the COILS deformer is applied to deform the 3D shape to conform to the new
Part region.
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5.9.1 User Interface

In this section I will describe the drag-and-drop interface from the perspective of the
artist. The technical details underpinning each technique are described in the following
section.

Selection and Part Extraction

The first step of a drag-and-drop operation is to select a region-of-interest on the 3D
surface. My prototype interface supports two selection tools. In the first the artist can
draw one or more connected strokes on the surface, from multiple viewpoints, to select
an interior set of connected faces. Alternately a lasso stroke beginning on the scene
background cuts through the model and selects the enclosed faces. Intelligent scissor
techniques [Funkhouser et al. 2004] for efficient Part selection could be applied to here,
although in practice we observe that our selection boundaries often lie some distance
away from geometrically-salient features (Figure5.11).

Once a selection is made and a drag operation initiated, the selection interior is
separated from the base mesh into a Part, and the resulting hole is filled with a patch
that smoothly blends with the hole boundary. The artist may use simple controls to
manipulate the shape of the fill region (Figure 5.12a-c), and once satisfied, accept the
current result and move on to the drag-and-drop phase.

Figure 5.12: Given an initial smooth fill surface (a), deformation parameters can be
tuned to create a wide range of alternatives (b-d). In (e) we set parameters to visually
approximate the result (f) of a nonlinear fairing technique [Schneider and Kobbelt 2001].
The reflection lines vary on the interior due to subtle shape differences, but the boundary
continuity is visually quite similar.

Geometry Drag-And-Drop

While in the drag-and-drop state, the artist can interactively drag the active Part across
the surface, uniformly scale it, and rotate its boundary “in the surface”. These con-
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strained interactions do away with the challenges of 3D manipulation, allowing for effi-
cient Part placement. The Part mesh is deformed such that its boundary is embedded
in the target surface, and a seamless connection between the target surface and Part
is displayed, providing a live preview of the result of the drop operation. If the Part
contains too much geometric detail to preview interactively, a reduced-resolution mesh
can be shown during interaction, and the full-resolution result is computed when the
drop is completed.

To support additional re-use of Parts, the interactive tool includes a Part library,
a scrolling list attached to the modeling window. The artist can drag the active Part
into the Part library, storing it for later use. When a Part from the library is dragged
onto the active model, the extraction state is skipped and drag-and-drop mode is entered
directly.

Variable Part Rigidity

Figure 5.13: Embedding the boundary of a cylindrical Part on a corner surface (a)
results in extreme distortion (b), which can be reduced by increasing boundary rigidity
(c-e). Offsetting the boundary from the surface and increasing the radius of the fair
transition region produces a useful socket (f).

By default, the drag-and-drop operation deforms the Part to conform to the rigid
target surface. An alternative is to smoothly deform the target region to fit the Part.
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One can then easily imagine a continuum of solutions between these two extremes, with
a partial deformation of both the Part and target region.

To control this blending of deformations, the artist is given a rigidity control over
the Part boundary. As rigidity is increased above 0, the Part boundary smoothly
blends from the embedding in the target surface to its initial rigid configuration, oriented
with respect to the target location. Once the boundary is detached from the target
surface, a smooth, variable-radius transition surface is added between the target region
and the Part. This smooth connection also allows the artist to offset the Part into or
away from the target surface, increasing the expressive capability of the tool. Natural
extensions would be to allow for further rigid transformation of the Part boundary, or
even interactive deformation of the loop vertices.

5.9.2 Algorithms

As mentioned, mesh drag-and-drop involves not only pasting a feature in a new location,
but also filling the hole left behind. I have applied my DEM parameterization and COILS
deformer to implement these geometric editing operations. Note that in most cases other
parameterizations and deformations could be also be used (for example, the Rotation
Invariant Coordinates deformation described above). However, it is convenient that only
these two simple geometric algorithms need to be implemented to reproduce the system.

5.9.3 Filling Holes

To implement Part extraction we must infer the surface underneath the Part, which
in effect means filling the hole left behind when the Part is removed. As it could
include interior holes or topological handles, the Part mesh is of no use in solving this
problem. Although excellent techniques for completely automatic hole filling have been
developed [Schneider and Kobbelt 2001; Davis et al. 2002; Liepa 2003; Bischoff et al.
2005], which can even copy local context [Sharf et al. 2004], I took a deformation-based
approach, because it more easily provides the artist with control over the result.

Figure 5.14 displays the steps of my hole-filling algorithm. A hole is considered to be
a piecewise-linear boundary loop with normals, and without an initial interior surface.
The boundary loop is embedded in a 2D circle, such that the distances between vertices
are preserved. Additional interior vertices are generated on a regular triangular grid and
meshed using Delaunay triangulation [Shewchuk 1996]. The planar boundary is then
mapped to the hole boundary, and the interior deformed using COILS, filling the hole.

Unfortunately, if the 3D boundary is significantly non-circular, the fill surface will
be highly distorted and may contain foldovers (Figure 5.14b). Hence, the next step is
to find a surface which spans the hole, map it to the plane via parameterization, and
re-apply the deformation. Although the DEM parameterization produces satisfactory
results when the boundary is relatively convex, for more complex cases free-boundary
conformal parameterization [Desbrun et al. 2002] is more robust. Ideally, this initial
preliminary fill surface would be continuous across the hole boundary. In most cases,
however, a minimal mean-curvature mesh suffices, found either by iterative Laplacian
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Figure 5.14: A hole can be filled by embedding the boundary loop in a planar disc (a) and
then deforming the disc, but this leads to undesirable distortion for irregular boundaries
(b). Instead we first create a membrane surface (c) and find a free-boundary parame-
terization of this mesh (d). Distant points can pull the fill away from continuity in the
transition region (e,f). To better approximate the target normals, we find an optimal
rotation around a fixed axis at each boundary point (g), resulting in a smooth fill (h).

smoothing of the circular fill mesh, or directly by solving Equation 5.3 with the Laplacian
vectors of the circular fill mesh set to zero.

Since the optimized planar mesh has a boundary shape very similar to that of the hole,
the fill surface is smooth. However, vertices on the “far side” of the hole have non-zero
weight, producing an undesirable bulge in the fill surface (Figure 5.14e). To correct this,
observe that the (estimated) normals on the hole boundary should be preserved after the
fill. This can be accomplished by defining a rotation Mi for each boundary vertex frame,
and then finding the set of transformations that minimizes total normal deviation:

arg min
Mi

∑
i

|1−N(i,Mi) · ni| (5.11)

where ni is the target boundary normal at point pi and N is a procedure which applies
the transformations Mi to the boundary frames, reconstructs the relevant interior region,
and estimates the output normal at pi.

This is a rather complex non-linear optimization problem, but I have found it sufficient
to constraint Mi to a 1D rotation around the axis (pi+1 - pi-1). Since N is a complex
procedure, I apply numerical gradient descent in two stages. First the rotation angles θi
are tied to a single global angle, resulting in a fast 1D search that removes the largest
error. Next the vector θi is tuned, which generally converges after 1-5 line searches, where
convergence is determined by a total angular error improvement of less than 2◦ between
steps, or when a time budget elapses. Although optimization should be repeated after
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each parameter change, this reduces interactivity and can cause some frame incoherence.
Instead I optimize once and then let the artist tune parameters based on the initial
smooth fill.

This approach produces smooth, boundary-continuous fill surfaces that are of a qual-
ity similar to much more complex techniques while also allowing the fill mesh to be
interactively re-shaped via deformation parameters (Figure 5.12e-f). Hence, it is also a
useful tool for “erasing” surface features and geometry repair.

The main limitation of this approach is that for hole boundaries that deviate signifi-
cantly from the plane or are highly non-convex, the mean-curvature membrane will not
be continuous at the boundaries, and may have very large bending angles. When this
occurs, the DNCP [Desbrun et al. 2002] parameterization will have large distortions, and
in particular the 2D boundary may not conform to the hole boundary shape, reducing the
quality of the fill mesh. In such cases, Schneider and Kobbelt’s [Schneider and Kobbelt
2001] fairing method gives good results, but is quite expensive.

5.9.4 Part Insertion

After the hole surface is filled, I find the (approximate) geodesic center using Dijkstra’s
algorithm and compute a DEM parameterization that contains the entire Part boundary.
The boundary is then embedded in the parameterization, as are the relative tangent-
normal frames at each boundary vertex.

The embedded boundary can be projected onto any 3D surface via a DEM parame-
terization of the target region, after which the relative frames are transformed back into
global coordinates using the new surface tangent-normal frames. Having determined the
necessary boundary constraints for the COILS deformer, the Part mesh is deformed
form its original shape and orientation to a configuration which precisely fits the new
location. Once the Part is deformed, it is stitched into the target mesh by inserting
the boundary within the DEM parameter space with a constrained Delaunay triangula-
tion [Shewchuk 1996]. Rotating and scaling the parameterization transforms the Part,
although the COILS displacement vectors must also be scaled.

With this machinery available, the artist can transport a Part across the current
surface, or to another surface, simply by positioning, orienting, and scaling a DEM-
based decal parameterization, as in the texturing tool of the previous chapter. However,
the artist never sees the parameterization. Because the deformation and stitching are
performed interactively, to the user it appears that they are directly manipulating a Part
which is “on top” of the base surface.

This approach to Part drag-and-drop is quite expensive. Feedback rates can be
made more consistent by simplifying the Part interior via edge collapses until it has
been reduced to a few thousand vertices, and then representing the full-resolution Part
as an offset surface, using the multiresolution approach (Section 5.5) As an illustrative
example, with this approach I could drag a 22k-vertex part over a target region containing
1k vertices at several frames per second on a single core of an 2.8Ghz Intel Core2 Duo,
while a Part with 10k vertices runs at 10-15 frames per second. To support Parts with
more extreme levels of detail, a multiresolution hierarchy [Kobbelt et al. 1998] could
be created, and the non-interactive detail levels only reconstructed after the Part is
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dropped.
As with hole filling, the boundary optimization described above is usually necessary,

as even for features with a sharp edge the designer may include a surrounding buffer
region which should be smoothly pasted. To improve interactivity while dragging the
feature across the surface, only the first single-angle step of the optimization is performed;
per-vertex tuning is deferred until the mouse button is released.

5.9.5 Variable Boundary Rigidity

Deforming the Part boundary to conform to the target surface can result in extensive
deviation from the initial shape. Hence, I also explored the option of a boundary with
variable rigidity, implemented using a linear variational curve deformation.

I adapted the Laplacian mesh optimization technique described by Nealen et al [Nealen
et al. 2006] to curves. In this method, the differential vectors are set to 0 and a weighted
“soft” positional constraint is applied to each vertex, with the weight effectively control-
ling an interpolation between complete fairness and the original shape. We would instead
like to blend between the original boundary loop Bo, and the 3D embedding on the target
surface, Bt. Hence, we compute the differential vectors using Bo and constrain the vertex
positions using Bt. Note that as the differential vectors are not rotation-invariant, we
must compute a suitable transformation which aligns Bo with Bt [Horn 1987].

With a very low weight, these positional constraints only fix the global position of
the solution, which otherwise looks like Bo. As the weight increases, the curve vertices
are smoothly deformed towards Bt. The artist is provided with a rigidity parameter
which is simply the inverse of this weight. With this semi-rigid boundary, the deformed
part will be disconnected from the target surface, so we find a fair transition surface
by solving a linear variational thin-plate problem [Botsch and Sorkine 2008] within a
variable-radius cylindrical region of the target surface. Given this flexible connective
surface, it is straightforward to allow the boundary to be shifted in to or out of the
surface.

5.9.6 Results

To evaluate the drag-and-drop interface, I made a prototype surface compositing tool
called meshmixer available for free on the internet3. A wide range of interesting feedback
was collected on this tool, which I will discuss in more detail in Chapter 7. Here I will
only briefly demonstrate some of capabilities of the tool.

Perhaps the most prevalent use of surface modeling is for creating characters for the
entertainment industries (film, video games, and so on). Figure 5.15 includes various
mythical creatures generated using the drag-and-drop tool, each in just a few minutes.

Surface models are also used extensively in industrial and automotive design. In these
fields, the actual designers often prefer to work with sketches and physical models, rather
than digital models, because of the comparative ease of iterative design. Simplified Part-
based interfaces like mesh drag-and-drop have the potential to make digital tools much

3http://www.meshmixer.com
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Figure 5.15: A gallery of mythical creatures including (left to right) the elusive 6-
legged Allocamelus, Elephant-Eared Centaur, Al-mi’raj, Cynocephalus, Minotaur, and
the terrifying Cerebunny. Each of these examples was created in just a few minutes using
my interactive drag-and-drop Part compositing tool.

more usable by traditional designers. In Figure 5.16 I experimented with two example
scenarios - satisfying engineering constraints, and integrating styling features from two
models. This latter examples shows one of the benefits of the COILS deformer, which
can handle the large interior hole.

The biggest complication with the meshmixer prototype was the Part selection tech-
nique. My simple tool only cuts on existing edges, and in some cases the source meshes
had inconvenient tessellations. The ability to cut across faces, combined with one of the
Intelligent scissor techniques described in the literature [Funkhouser et al. 2004; Sharf
et al. 2006], would be a welcome addition.

Figure 5.16: Features of a scanned car surface (a) are dragged-and-dropped to (b) satisfy
hypothetical engineering or design constraints. Since the COILS deformer can be applied
to non-manifold features, it can be used to transfer headlight cut-outs (c) to the hood of
another car (d).

The simplicity of the meshmixer interface provides a level of expressive freedom not
available in previous composition tools, or even in many other “intuitive” and “easy-to-
use” shape modeling tools. Some of the most positive feedback I received came from
artists who wish to utilize 3D modeling in their physical works. The main impact of
meshmixer seemed to be that it transformed tasks which had previously been tedious,
error-prone, and best avoided if at all possible, turning them into enjoyable creative
experiences. This expands the range of models which are practical to create. Figure 5.17
shows a variety of creative models produced by people who have experimented with the
meshmixer tool. Note that in most of these examples, the artists are unlikely to ever
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have invested the time necessary to create the results in a traditional tool.

Figure 5.17: My drag-and-drop interface makes it simple and even enjoyable to create
interesting 3D compositions. “Sea of Faces” (a) is composed of 42 parts and was created
in under an hour by a graphics researcher, as was “Bodhi” (e). “Toys for my Grandchild”
(b) and “Tricerasapien” (c) were contributed by testers of meshmixer. A professional
artist and jewelry designer sent us the results of a form exploration (f), using our tool to
mix fluid simulation “spatters”.

5.9.7 Limitations

The use of the DEM leads to a major limitation of meshmixer, namely that Part bound-
aries need to be roughly circular and the surfaces onto which Parts are pasted need to be
relatively smooth. A fundamental property of the DEM is that it will distort and even
fold-over when passing across regions with widely varying curvature. This can cause
visible tearing and even catastrophic failure in the local remeshing operations. A more
robust local parameterization, or perhaps a scheme for local transport of the boundary
across the surface, could improve the capabilities and robustness of the tool. The parallel
transport algorithm of Crane et al. [Crane et al. 2010] may help with the latter prob-
lem, however it will do nothing to help with generalized transport involving arbitrarily
complex target surfaces. In these cases, parallel projection will be more robust.

Two other similar problems were raised by professional artists, most of whom use
rely almost exclusively on quad meshes for production models. The edge loops carefully
designed into their edge loops to support high-quality re-posing and animation (Sec-
tion 3.2.1) were generally destroyed by the triangles we inserted to fill holes or stitch
the Part to the target mesh. These regions must be manually “re-topologized”. Global
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quad-meshing algorithms do not appear to address these hole filling and stitching prob-
lems, as it is imperative that the existing quad mesh structure not be modified. Based
on the feedback I collected, this appears to be the most pressing issue for artists and
designers who have tested meshmixer.

5.10 Conclusions

In this chapter I presented a new approach to shape-preserving surface deformation,
which I called the COILS deformer. This deformer is driven by a geometric front propa-
gation, so in some sense it solves an initial-value problem, in contrast to the boundary-
value problems solved by variational and energy-minimizing techniques. The COILS
deformer allows the designer to control the deformation of any point-sampled geometry
via arbitrarily-complex parameters, at interactive rates. The popularity of geometric
deformation techniques in commercial modeling tools suggests that these are significant
practical benefits.

In comparison with the variational Rotation Invariant Coordinate (RIC) deformation,
COILS is neither smooth nor topologically robust. However, I did show that it was more
rigid under large deformations, and in particular is able to preserve relatively extreme
boundary conditions that cause RIC to break down. In general, I found that with the
COILS deformer it was easier to provide the artist with tools to control how deformation
propagated from the boundary into the Part surface.

An interesting question is whether COILS and variational techniques like RIC can be
integrated. The smoothness and topological limitations of COILS are largely due to the
use of a distance field to determine upwind ordering. One possibility is to replace the
distance field with a smooth harmonic field, found via variational interpolation. Another
is to use the result of the COILS deformer to determine per-vertex frame transforma-
tions, and apply these transformations to the Laplacian vectors (essentially replacing
the rotation-estimation step of RIC). The resulting least-squares solve may diffuse the
discontinuities in the orientation field.

Another recent work which provides a geometric approximation to a variational prob-
lem is Farbman et al. [Farbman et al. 2009]. This work factorizes the 2D Poisson equation
such that the problem reduces to finding a smooth thin-plate (Laplacian) interpolant.
This variational interpolant is then replaced with a geometric solution, found via gener-
alized mean-value coordinates [Schaefer et al. 2007]. The simple boundary-only deforma-
tion I described in Section 5.2 takes a roughly similar approach, although in 3D, using
inverse-distance weights, and with the addition of displacement vectors. It is possible
that the COILS deformer may have a similar sort of variational interpretation, although
I have yet to be able to make any connection to existing techniques.

Based on the COILS deformer, I completed my Part definition and described a
novel artist-oriented Part drag-and-drop tool for polygonal meshes. This tool allows a
3D designer to quickly compose a complex 3D model by pulling in Parts from a pre-
existing library, as well as create new library entries simply by selecting and dragging a
region of any existing mesh. As was my intent, this tool is highly interactive, allowing
the designer to drag features across a surfaces and manipulate parameters at real-time
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rates.
While the meshmixer tool described in this chapter focuses on creating static meshes,

there are no technical restrictions preventing it from transparently building a Surface Tree
which represents the construction history of the assembly. Hence, the meshmixer tool is
essentially an interface for interactively assembling Surface Trees from existing Parts.
Furthermore, as it can be used to select and extract Parts as well as infer the surfaces
“underneath” these Parts, meshmixer could be extended to support reverse-engineering
of Surface Trees from static models.



Chapter 6

The Surface Tree: A Hierarchical
Part-Based Representation

Some material in this chapter is derived from the article “Sketch-Based Procedural Surface
Modeling and Compositing with Surface Trees” authored by Ryan Schmidt and Karan
Singh [Schmidt and Singh 2008]. The text and images reproduced here are used with
permission from my co-author.

6.1 Introduction

In the previous two chapters I have described one approach to implementing the do-
main/shape surface Partdefinition of Chapter 3. The Discrete Exponential Map (DEM)
allows the Part domain to be encoded relative to a single surface point, and if we embed
the part boundary in the DEM parameter space, the COILS deformer can reconstruct
the Part shape.

The next question is, can a hierarchical, procedural surface representation be con-
structed out of these parts? The drag-and-drop tool described in the previous chapter is
in some sense a very simple 2-node procedural hierarchy. In this chapter I will explore
how to layer these Parts in a procedural manner. Once a sequence of Parts can be
layered, we will be able to take the output of the layering and insert it into another layer
sequence. The result is a structured tree-like hierarchy which procedurally represents a
complex surface model, which I will call a Surface Tree.

Recall that in Chapter 2 I described several properties that we would like to have in
a procedural model - abstraction, independence, hierarchy, and composability of nodes,
and suitability for interactive use. We will see that my Surface Tree does better on these
axes than any previous work. However, as each Part does depend on a single point
embedded in some other manifold, Surface Tree nodes cannot be completely independent
in the same way that a solid modeling node can be.

115
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Figure 6.1: A surface editing operation locally replaces some region U of a surface with
a new patch V (left). In a Surface Tree, operations can be applied hierarchically, although
secondary branches must output surfaces with boundaries to be properly merged (right).

6.2 The Surface Tree

The first step in constructing the Surface Tree is to define a Node. In a CSG Tree, a
node is typically either a primitive, a unary operator, or a composition operator. At
a more conceptual, however, each of these different types of nodes simply modifies the
existing inside/outside classification for each point inside a fixed volume. Hence, a general
solid modeling node replaces some 3D volume with another. Since we are operating on
surfaces, we can define a similar general surface modeling node as one which takes an
input surface S, some region U ∈ S, and replaces U with a new surface V :

N(S,U ,V) = (S \ U) ∪ V (6.1)

Note the symbols here are exactly the same as those used in my Part domain (U) / shape
(V) decomposition, and Equation 6.1 is exactly the Assembly form from Section 3.4. This
is not accidental - the process if attaching a Part using the on operator provides most
of the key components of a Surface Tree node. We will see below that we only need to
add one more piece of information to combine Parts into a procedural hierarchy. At an
abstract level, though, a node simply replaces U ∈ S with V .
N can be thought of as a surface compositing operation, and hence a complex surface

can be recursively defined by applying nodes to a base surface B:

Si+1 = Ni(Si,Ui,Vi) (6.2)

S1 = N0(B,U0,V0) (6.3)

Intuitively, the final output surface is defined by incrementally layering a series of surface
patches Vi onto B. Although the recursion above is sequential in nature, any Vi can be
defined by another series of compositions. Hence, a Surface Tree is a structured binary
tree of composition nodes N , with a primary branch that contains B as the initial leaf
node, and a series of nested secondary branches which feed into the Vi’s of the primary
branch (Figure 6.1).

Note that the arguments to N are not independent. S can be any surface, but it
is necessary that U ⊆ S, and V must always have boundaries compatible with U . This
implies that only B can be a surface without boundary - all Vi’s must have a boundary
loop (and hence so must all secondary branches).
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6.2.1 Expanding the Definition

Equation 6.3 provides the most abstract definition of a Surface Tree, as a tree of nodes
which replace surface regions with others. However, unlike in the case of solid modeling
where any volume replacement is valid, certain constraints must hold for Equation 6.1
to be evaluated. We can expand Equation 6.1 to make these constraints more explicit,
and also satisfied by definition.

A major assumption in the equations above is that the boundary of the replacement
surface V precisely aligns with the region U on the input surface, ∂V = ∂U . As we saw in
Section 3.4, one way to guarantee that this property holds is to define V = E(U), where
E is a boundary-preserving editing operation (Figure 6.2). Ideally it will also be the case
that E can be recomputed for any U .

We now can assume that V can be be procedurally re-computed if U changes. How-
ever, if the designer changes U0 in Figure 6.1, S1 will change, and U1 will need to be
procedurally re-computed as well.

Figure 6.2: To support a dynamically-changing input surface S, the editing region U is
stored in a parameterization of S which can be recomputed if S changes (left). Similarly,
and replacement patch V is represented as an editing operator applied to U (center) which
preserves the boundary ∂U (right).

As discussed in Section 3.4.8, to ensure maximum flexibility it is desirable that the
re-computation of U be as independent of S as possible. One way to accomplish this is
to use the tools of Riemannian geometry [do Carmo 1994]. We restrict S to 2-manifolds
embedded in R3, guaranteeing that any point on S has a local neighbourhood with disc-
like topology. S is then covered with a finite atlas of topological discs, referred to as
coordinate patches. A mapping P known as a planar parameterization exists between
each 3D patch and R2. Given an atlas on S, we can now encode U as a mapping
from some 2D region u of the atlas parameter-space to the 3D surface. To simplify
the following exposition, assume that U is contained within a single coordinate patch
with parameterization PU . Then we can write U(u) = PU(u) (Figure 6.2), and rewrite
Equation 6.1 as

N (S,u,E) = (S \ U(u)) ∪ E (U(u)) (6.4)

With this formulation, Surface Tree nodes can be procedurally re-computed because
the editing region U is encoded independent of the current 3D embedding of the input
surface S. Instead, it depends on the parameterization. As I have mentioned, avail-
able manifold representations for arbitrary surfaces have a variety of limitations (Sec-
tion 3.6.1). Even if a manifold were available, mapping areas between manifolds is highly
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non-trivial (Figure 3.12). Hence, to build a practical system using mesh or point set
representations, we must avoid assuming the existence of a global, consistent manifold
parameterization. This is problematic because we now lack a global embedding space in
which to fix the location and shape of each layer. In the next section, I will describe how
we deal with this issue and implement Surface Trees in an interactive system.

6.3 Implementing a Surface Tree

In Section 6.2 I described a mathematical formulation of a Surface Tree. In this section
I describe one practical implementation of the Surface Tree, focusing on how the tree is
constructed and updated. To begin, I will limit surfaces S to triangular meshes, although
the general approach is also applicable to point sets and arbitrary polygonal meshes.

6.3.1 Constructing a Global Parameterization

Since a global manifold will not be available, we need to devise a way to represent U and
map it between surfaces. Recall that in Section 3.6.1 I explained that even if a manifold
were available, these problems would be more easily solved by encoding U within a
parameterized geodesic disc. In this case, the 2D manifold region u shrinks down to a
single point, and we must also store the geodesic radius r. Note that this geodesic disc
may not be specified directly, as a node can be initially created by specifying U directly
on the surface. In this case we must determine a p ∈ S and geodesic radius r, such that
the geodesic disc dg(q,p) < r contains U . We can then map U into the DEM parameter
space of this geodesic disc, resulting in a sort of canonical 2D representation of U . To
find U on some other surface, we need only to compute and parameterize a geodesic disc,
and then U can be mapped to the new surface.

With this geodesic-disc decomposition in place, we can rewrite Equation 6.1 as

Sout = N (Sin,u, r,E) (6.5)

where u is now a single point embedded in some parameterization, r is the radius of a
geodesic disc which contains U , and E is a mesh editing operation. The primary branch
of a Surface Tree built with these nodes begins with a base mesh B and incrementally
applies procedural mesh editing operations:

Si+1 = Ni(Si,ui, ri,Ei)
S1 = N0(B,u0, r0,E0)

Note that u must be mapped to a 3D location on the surface before the geodesic disc can
be computed. I will refer to both this 3D point, which I will denote p, and the 2D point
u as the seed point of the node, with the embedding of the point determined by context.

We have simplified the problem to embedding the u in some underlying parameteri-
zation. However, we still do not have a manifold parameterization. To move forward, I
will assume that the mesh edit E maintains the disc-like topology of U . If this is the case,
then V can be parameterized, and a one-to-one map exists between both the surfaces
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Figure 6.3: If the edit applied by a node is an invertible deformation of the manifold, then
the parameterization provides a map between U (a) and the deformed surface (b). A global
manifold-like parameterization of the final surface is now provided by the composition of
(c) the masked parameter space for the green surface and (d) the parameter space for the
edit.

and parameterizations of U and V (Figure 6.3a-b). Note that in some sense, any E which
maintains disc-like topology can be cast as a deformation of the manifold, in which case
it becomes clear that the parameterization of U is a parameterization of V .

If we restrict E to deformations, then we have effectively created a global parame-
terization which covers the surface. This structure is not technically a manifold, but
it serves much the same purpose for embedding individual points. To understand this
global parameterization, note that evaluation of a Node (Equation 6.5) not only creates
a hole in Sin and replaces it with V , but also creates a hole in the parameterization of Sin
and replaces it with the parameterization of V . The union of these two parameter spaces
- the parameterization of S with a hole cut out of it, and the parameter space of the in-
serted Part - precisely cover the composite surface, and hence a global parameterization
is maintained at the output of each node (Figure 6.3c-d).

Note that if the parameterization of V is taken from U , as is straightforward if E
is actually a deformation, the above statements are somewhat obvious. In fact this is
exactly the process that occurs in H−Splines and Surface Pasting - each node is simply
deforming the manifold, and the global parameter space is never modified. However, in
a more general node based on my Part definition, E will involve stitching an arbitrary
surface into U . The resulting mesh will have a completely new parameterization, but as
long as it still has disc topology, no changes need to be made to the above discussion.
One must simply take care to realize that the global covering is actually a disjoint set of
parameter spaces, with maps between the boundaries.

6.3.2 Node Anchoring

For the purposes of storing individual points on a surface, the global covering param-
eterization I have just presented serves much the same purpose as a proper manifold
parameterization. We can embed a point in the composite parameter space, and map
that point back to the surface. The main difference with a proper manifold is that we
have no transition functions between the disjoint regions of the parameterization. How-
ever, for our purposes the computations for which one might desire transition functions
can be computed directly on the 3D surface.
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Figure 6.4: Assuming we have the atlas from Figure 6.3, a layered node can be anchored
in three different ways. If the 3D position of the anchor is (a) within the blue node, then
a sensible choice is to store it in the parameter space of the blue node, and similarly (b)
if the node is on top of the green surface. Note, however, that a node layered over the
blue surface can also be anchored in the parameter space of the green node, as in (c). In
this case the 3D surface position can only be found by mapping through the blue node.

Given this global parameterization, the center point pi of the geodesic-disc support
region for a new node can be embedded as an anchor point ui in the parameter space of
some upstream node Nj<i. Figure 6.4 considers the three different cases of embedding
pi in a surface composed of two parameter spaces. We can imagine this surface being
covered by a sort of patch-quilt of parameter spaces, in which case the straightforward
approach is to embed pi in the parameter space of the patch which contains it. However,
technically there may be additional parameter spaces “underneath” that of the uppermost
node, and it is also possible to embed pi in any of these parameter spaces (Figure 6.4c).
This possibility complicates the process of recovering pi from ui, as I will discuss below.

Figure 6.5 shows some additional examples of anchoring nodes in simple Surface
Trees. Figure 6.5b makes clear one of the benefits of the anchor point approach - it
cleanly handles the ambiguous cases where an editing region U overlaps the boundaries
of several underlying layers. Since the anchor is a single point, it can be embedded in
the parameter space of a single input node. The boundary overlap still occurs once the
geodesic disc is created, but at that point we are operating directly on the composite
output mesh and the composite global parameterization is no longer in use.
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Figure 6.5: Three bumps are layered onto a sphere In (a1-a2), the red and blue bumps
are anchored to the parameter space of the green bump, while the green bump is anchored
to the sphere. In (b1-b2), the blue bump has moved off the green bump, and so is also
anchored to the sphere. In (c1-c4), the green bump is deleted. In this case the anchors
for the red and blue bumps are mapped down to the sphere before the bump is deleted.
Then the bumps can be recomputed on the sphere.

6.3.3 Node Evaluation

With these encoding and anchoring schemes in place, we can now discuss how Equa-
tion 6.5 can be implemented. Psueodocode for my evaluation algorithm is shown in
Algorithm 6.3.3. The process is relatively straightforward, once the surface anchor is
known, we compute the parameterized geodesic disc using the DEM, find the new Part
shape, and then insert the Part mesh into the target surface. The main complication is
the ProjectToSurface function, which I will now describe.

Si+1 ← N (Si,ui, ri,Ei)
p = ProjectToSurface(ui)
U = GeodesicDisc(p, ri)
PU = ExpMapParameterization(U)
Si+1 = (Si \ U) ∪ Ei(U ,PU)

Algorithm 1: Computing the output of a Surface Tree node.

Recall from the previous section that each node i is anchored in the parameter space
of some upstream node Nj<i. This embedded anchor can be mapped forward through
the intervening nodes to unambiguously fix the position of the seed point on the current
surface using the algorithm listed in Algorithm 6.3.3. Two examples of this process are
visually depicted in Figure 6.6. Note that as a parameterized point ui has both 2D and
3D coordinates, here usage is determined by context.

With the ProjectToSurface algorithm in place, we now know how to evaluate Equa-
tion 6.3.3. Figure 6.7 graphically depicts this evaluation process. This figure also makes
clear a significant aspect of my Surface Tree implementation, namely that the anchor
point approach creates a dependency between Ni and Nj (Figure 6.5). As a result, the
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p← ProjectToSurface( ui )
k = j : ui ⊂ Nj
while k != i

u = Ek(u)
k = k + 1

p = u

Algorithm 2: Projecting a seed point to a surface.

Figure 6.6: In (a), the red bump is anchored in the parameter space of the green bump.
To map this anchor to the surface (algorithm ProjectToSurface), we (b) must first project
it to the surface of the green bump, and then apply the edit operation of the blue bump, as
the blue-bump node is “below” the red bump. Similarly, in (c) the red bump is anchored
to the sphere, so it must pass through (d) both the green and blue bumps to reach the
surface.

Surface Tree is not strictly a tree, but rather a highly structured dependency graph [Hae-
berli 1988].

I should note that it is not clear how one could possibly avoid this dependency struc-
ture. Even if a full manifold parameterization were available at each node output, node i
would still need to be dependent on node i− 1 to maintain consistent positioning on the
surface if the manifold were to change. I believe this is upstream dependency is unavoid-
able because the “space” over which each node is defined is ultimately another surface.
This is a key difference with CSG nodes, which are each defined over a consistent space,
namely R3. The Surface Tree dependency structure does complicate tree manipulation
operations, as I will discuss in the next section.

Secondary Branches The above discussion computes node i based on node i − 1,
and hence only explicitly handles the primary branch. Secondary branches generate
arbitrary meshes with boundaries, which must be merged into the primary branch. This
is accomplished by defining E to be the merging operation. I described precisely such
an operation in the previous chapter, in Section 5.9. The basic idea is to embed the
boundary of the mesh in a parameter space, insert this boundary into the Part domain
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Figure 6.7: To evaluate node Ni for (b) the input surface Si, we (c) first take the anchor
point ui, which is embedded in some upstream node Nj<i, and map it forward to the point
p on the input surface Si. Next we compute the editing region U by (d) segmenting from
Si an approximate geodesic disc with radius ri around p, (e) parameterizing this disc
using the DEM, and then (f) passing it to the shape operation Ei to generate the edited
region V. Finally V is combined with (g) Si \ U to produce (h) the output surface Si+1.
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U , and then use the COILS deformer to deform the Part shape, in this case the output
of the secondary branch. If the part is simple enough, a local geometric texturing [Elber
2005] approach can also be taken - an example is shown in Figure 6.1.

6.3.4 Surface Tree Manipulation

One advantage of the Surface Tree construction I have described is that nodes can be
dynamically manipulated simply by interacting with the anchor points using the surface-
constrained handle described in Section 4.6. This 3D widget, which also incorporates
components for rotating and scaling, allows edits to be quickly “dragged-and-dropped”,
re-ordered, and deleted.

Recall that atNi, the input surface is covered by a composite parameterization formed
from a set of disjoint patches defined by the upstream nodes Nj<i. If we assume that
Ni is initially anchored in Nj, then as the user drags the 3D anchor point pi across the
surface, it may pass out of the parameter-space region of Nj and into the space of Nk 6=j.
In this case we must dynamically re-anchor the node.

In Figure 6.4 I showed that at any point on the current surface, there may be multiple
underlying parameter spaces. Hence, when dynamically re-anchoring a node we may
have a choice of which parameter space to embed it in. In my interactive tool, I took
perhaps the simplest approach: each time node N is explicitly moved by the designer, I
automatically re-anchor its seed point in the “nearest” input node using Algorithm 6.3.4.
Note that in this algorithm the inverse mapping E−1 is required. To avoid requiring
E to be explicitly invertible, I implement the inverse mapping by finding the triangle
containing p and interpolating u from the triangle uv-coordinates.

u← FindAnchorPoint( p ∈ Ni )
k = i− 1
u = E−1

k (p)
while u /∈ Uk

u = E−1
k (u)

k = k − 1

Algorithm 3: Finding the anchor point for a surface point.

Algorithm 6.3.4 can also be used to handle anchor point management during explicit
tree manipulation. There are two main operations which must be handled, namely remov-
ing and inserting a node. Before removing node Ni, Algorithm 6.3.4 is used to transfer
any seed points anchored in Ni to some input node Nj<i. Once this is done, there are
no longer any dependencies on Ni, and it can be can be safely removed by connecting
its input Ni−1 to its output Ni+1. Similarly, to insert Nk between Ni and Ni+1, any seed
points anchored to Ni lying within the new support of Nk are “pushed forward” to Nk.

Although it is not possible to perfectly anticipate the user’s intent in all cases, I have
found that Algorithm 6.3.4 produces the expected behavior most of the time. Essentially,
if node A is anchored to node B, then when B is dragged across the surface, A will “stick”
to it. This emulates the object grouping support found in vector graphics tools such as
Adobe Illustrator [Adobe Systems Inc. 2007a].
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It is important to note that automatic anchoring will only link A to B if the user
explicitly drags A on to B - anchoring does not change if B is dragged underneath A.
This prevents accidental sticking when a node has larger support than is clearly visible,
but can be unintuitive if the artist later forgets the tree structure, attempts to drag B,
and expects A to come with it.

The node layer order implicitly defined by the dependency structure of the Surface
Tree can also be somewhat unintuitive if node Ni+1 involves a large change to the surface,
and is dragged on top of a small change at node Ni, which will then be “underneath”
it. Conceivably these cases could be detected and the tree automatically restructured,
but this would involve significant and costly interrogation of the surfaces themselves, and
inference would inevitably be prone to error. Some of the Surface Pasting did in fact
try to address this situation by automatically re-ordering layers [Barghiel et al. 1994],
but there are many cases where this behavior can produce un-expected results, and it
diverges from 2D layer-based interfaces [Adobe Systems Inc. 2007a] where layer ordering
is explicitly under user control. Hence, in my interface the user must also explicitly
re-order the nodes.

6.3.5 Parts with Arbitrary Topology

In the discussion above, I have assumed that the Part inserted at each node has disc
topology. In this case, each node conceptually defines an invertible deformation of the
underlying manifold, and hence we can map any point between the input and output
surfaces of each node. However, this assumption means that no node can modify the
topology of the base surface. Hence, it is useful to consider how we might do away with
this assumption.

There are two distinct types of non-disc topology that a Part may have. The first is
if the Part has more than one boundary loop, but is otherwise isomorphic to a cylinder.
In this case, there are multiple disjoint U ’s which can be handled independently. Two
holes are cut in the base surface parameterization, and a cylindrical parameterization is
used along the Part. I will present an example of this class of Part in Section 6.6.1.

The second case, which can be combined with the first, occurs if the Part internally
has topological holes and handles, and hence is not isomorphic to a disc or cylinder. This
does not affect the Part insertion, but if the Part surface needs to be parameterized,
then we must either make cuts to create a disc topology, or construct a piecewise atlas
of local maps.

In both these cases, the main problem is that there is no intrinsic mapping from the
base surface to the Part surface. If node Nj has non-disc topology, then we cannot eval-
uate ProjectToSurface within Uj. Similarly, Ej will not be invertible, so FindAnchorPoint
must terminate on Vj.

These restrictions are not catastrophic, but they do introduce two constraints. First,
we cannot evaluate any node whose anchor would need to map through Uj. In practice,
this means that no downstream node Nk>j can be anchored “underneath” Nj, or in other
words, Nj must be “on top” of everything else that overlaps Uj.

Similarly, if we were to remove Nj, we cannot map any anchors attached to Nj back
to the input surface Sj. These nodes can only be discarded. In an interactive system,
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an alternative is to force the user to move any anchor points off of Nj before it can be
removed.

Of course, this discussion assumes that we insist on parameter-space maps for all our
anchor points. It is also possible to transfer anchor points directly in 3D. For example,
after removing Nj we could find the closets point on Sj for each 3D anchor position lying
on Nj.

6.4 Comparison to Previous Approaches

Many previous procedural surface representations can be expressed as specializations of
the Surface Tree. In this section I will consider three of the most expressive alternatives
- H-Splines, Multiresolution meshes, and Surface Pasting. In each case I will consider
the properties of procedural models that I described in Section 2.2 - abstraction, inde-
pendence, hierarchy, and composability - and then describe how the operations in these
methods map to my Surface Tree notation.

H-Splines

Forsey and Bartel’s seminal Hierarchical Splines or H-Splines [Forsey and Bartels 1988]
offered the first truly procedural approach to interactive surface editing. An H-Spline
begins with an initial B-Spline patch. The regular control point grid can then be locally
refined using knot-insertion rules to increase the level of detail. These detail overlays are
blended into the base patch, and their 3D control points encoded using relative offset
vectors. The relative encoding allowed the detail surfaces to naturally deform as under-
lying layers were interactively modified, producing a truly procedural and hierarchical
surface representation. The overlays are resolution-specific and cannot be arbitrarily
re-ordered, so abstraction is lacking. However, the uniformity of B-Spline control point
grids does confer a reasonable level of independence. Similarly, two detail overlays can
be functionally composed only if their underlying topologies are compatible.

In terms of the Surface Tree, each detail overlay is a node or Part, and U can be
defined as a box in the intrinsic B-Spline parameterization. This parameterization is
shared between all surfaces in the Tree, ie PS = PB. The operator E is a normal-frame-
encoded vector displacement of the refined control point network. Note that Parts must
be expressed in terms of the control-point grid. In particular, Part boundary edges must
all be axis-aligned.

Multiresolution Meshes

Multiresolution surfaces [Zorin et al. 1997; Lounsbery et al. 1997; Guskov et al. 2002]
adapt the H-Spline concept to mesh representations. Note that in most multiresolution
methods, the notion of local refinement has been discarded, and replaced with global
refinement followed by smoothing and displacement steps. This representation is proce-
dural, and technically a hierarchy of displacement layers can be formed, although I am
not aware of any system to do so - the standard layout is a flat list. To avoid dependence
on global parameterizations, multiresolution methods encode displacements relative to
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the base mesh topology. As a result, independence of displacement layers is extremely
limited. Assuming topological compatibility, we do have relatively high levels of abstrac-
tion and composability, as displacement layers can easily be re-ordered or functionally
combined.

To write a multiresolution surface, each refinement/displacement layer becomes a
node. No parameterizations are used, instead U is instead the entire input surface, ie
U = S. The modified surface V is constructed by refining and displacing U . Hence, any
procedural manipulation must be expressed in terms of the refinement and displacement
rules, and the displacement representation is tightly coupled with the vertices of the base
surface B.

Surface Pasting

Surface Pasting [Bartels and Forsey 1993; Barghiel et al. 1994] was developed to address
one of the key limitations of H-Splines, namely that the boundaries of detail overlays
were constrained to lie along iso-curves of the underlying parametric patch. Motivated
by the desire for a fast approximation to layered spline displacement [Bartels and Forsey
1993], Surface Pasting allows NURBS patches to be hierarchically pasted to a base spline
patch, with no restrictions on the patch shape or its orientation. To accomplish this,
each patch is actually an independent surface - at each node, the underlying surface is
trimmed to create a suitable hole, and the patch simply positioned in the hole, with the
boundaries optimized so that the composite surface appears as continuous as possible.

The pasted overlay patches are represented using an offset-vector representation, as in
H-Splines. The set of overlays is represented as a DAG, and any overlay in the hierarchy
can be interactively manipulated, after which overlapping patches are re-applied. The
result is a truly procedural and hierarchical representation. All the patches are stored
as a tree of polygons in the base NURBS parameterization, which can be arbitrarily
re-ordered, and in that sense abstraction and independence are well-satisfied. However,
because the pasted surfaces are not actually integrated into a new surface, but rather must
be processed independently, pasted patches cannot really be composed in the complexity-
hiding sense.

As a Surface Tree, each pasted surface is a node, and as in H-Splines, the parame-
terization at each input surface is the shared global NURBS parameterization PS = PB.
For each node, U is a 2D polygon in this parameterization. The operator E is again
a normal-frame-encoded vector displacement of the patch control points, followed by a
trimming of the base surface and an optimization of the pasted surface boundary. Note
that in Surface Pasting, the operation (S \U)∪V does not produce a continuous output
surface, but rather two disjoint surfaces.

6.5 A Procedural Mesh Data Structure

So far I have presented the major algorithmic aspects of my Surface Tree implementation.
In terms of an interactive tool, another major challenge to realizing a Surface Tree editing
interface is that the evaluation of each node involves considerable computational expense.
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Figure 6.8: The Mask operator creates a hole in S by hiding triangles in the editing region
U (a) during mesh iterations (b). Edits E generate V by copying and modifying U (c),
which often involves mapping to uv-space for re-meshing. Finally, Weld synthesizes a
manifold mesh by transparently combining Mask(S,U) and V during iteration (d).

When a node is modified, its parents are invalidated, so a modification deep in the tree
can cause a cascade of re-computation. In this section I will describe how to reduce the
cost of this recomputation.

I will focus on triangular meshes. To simplify notation, assume that a mesh is a flat
list of triangles. Each node in the Surface Tree then takes an input mesh Sin, modifies it,
and outputs a new mesh Sout. As the surface region U is defined with respect to Sin, each
node is dependent on its input mesh, making a full tree update O(N) in the number of
nodes. This cost can be reduced by storing all intermediate meshes - then if the designer
alters node i, only nodes j ≥ i need be evaluated. Unfortunately, the overhead of copying
and storing the mesh at each node is overwhelming.

Since tree nodes are locally supported, it is possible to construct a more efficient data
structure for representing intermediate meshes. First we define two abstract mesh editing
operations - Mask and Weld. Mask simply removes the triangle subset U ⊂ S from S
(Figure 6.8b), and, recalling our previous notation V = E(U), Weld inserts V into the
hole created by Mask (Figure 6.8d):

Mask(S,U) = S \ U Weld(S,V) = S ∪ V

As previously noted, a procedural edit E must preserve the boundary of U , to avoid intro-
ducing “cracks” between S and V . Hence, assuming that U and V have been computed,
these operators can be chained together:

Sout = Weld( Mask(Sin,U) , V )

One way to realize these operators is to access the geometry of any S through iter-
ators. Then Mask and Weld can be implemented as iterators which either skip certain
triangles (Mask) or iterate over multiple meshes (Weld). With this approach, a node
never modifies Sin, but rather generates an iterator which masquerades as a manifold
mesh by transparently hiding the triangles in U and inserting V . Clearly, Mask and Weld
can be applied recursively, creating a procedural mesh data structure.

In practice, our mesh is not simply a list of triangles, but an efficient vertex/edge/face
manifold representation. This complicates the implementation of Weld, as it must trans-
parently re-write the incoming and outgoing indices of boundary vertices and edges, to
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preserve the outward appearance of a manifold mesh. Note that Mask and Weld can
also be applied to point set surfaces, where the implementation is simplified because the
explicit boundary re-writing is unnecessary.

Since Mask and Weld do not copy or modify Sin, they are highly efficient even when
applied to large meshes. They do, however, add overhead to mesh iterations, which can
limit interactivity as the Surface Tree grows. Hence, in practice we have found it useful
to occasionally cache a full copy of Sin at a node. This cache simply copies the geometry
produced by the incoming Mask/Weld iterators into a single manifold mesh, which is
much more efficient to iterate over. In particular, if the user selects Ni for editing, we
cache the output of Ni−1 to ensure that interactive feedback is as fast as possible.

6.6 A Surface Tree Modeling Tool

To explore how Surface Trees could be used in an interactive 3D design tool, I im-
plemented a Surface Tree editor as an extension to the ShapeShop 3D modeling sys-
tem [Schmidt et al. 2005]. Similar to other sketch-based modeling tools, ShapeShop’s
workflow involves a mixture of sketch-based and traditional interactions. A suggestion-
list interface [Igarashi and Hughes 2001] allows the user to create and modify a variety
of edits based on sketched curves. Other parameters are controlled using 2D and 3D
widgets.

The Surface Tree tool I will describe here was designed to support “from scratch”
modeling, driven by sketch-based interactions. The development of this modeling tool
also pre-dates the COILS deformer [Schmidt and Singh 2008]. As a result, the Part
shapes created by the various sketch-based editing tools were limited to those that could
be represented as vector displacements. I will discuss the integration of COILS-based
Parts later in this section.

6.6.1 Sketch-Based Surface Tree Modeling Tools

Each tool in the Surface Tree editor takes one or more user-sketched strokes as input
parameters, and then appends a node to the Surface Tree. Within this node, E is a
displacement operation that also may involve local remeshing in the DEM parameter
space. These editing operations are designed to be procedural themselves, and hence can
be computed at arbitrary resolution, allowing high-quality surfaces to be generated.

Sketched Displacement

Displacement mapping [1984] is one of the simplest types of procedural surface manip-
ulation, and simple displacement-painting tools [Lawrence and Funkhouser 2003] have
become popular in commercial systems [Pixologic, Inc. 2011]. Although here a sketch-
based approach is taken, painted displacements could also be captured and stored in a
procedural decal.

The tool supports displacement of arbitrary regions by allowing the user to directly
sketch a closed loop on the surface (Figure 6.9a). The displacement function has a variety
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Figure 6.9: Contours sketched on the surface (a) can be used to create sharp extrusion (b)
and soft displacement (c). These edits have various parameters, such as blending radius
(d), and can also be inset into the surface (e).

Figure 6.10: Displacement along a sketched curve on the surface can either have uniform
height and width (a), varying height defined by a profile curve (b), and a width which
varies with the profile height (c). A sharp crease can be produced by sampling a sketched
spline and inserting the resulting polyline directly into the uv-space mesh. A fall-off region
blends the crease into the surrounding surface. The crease can be offset (d) into or (e)
away from the surface.

of parameters, including smooth and sharp transition (with the latter being referred to
as extrusion), displacement height, and blending radius. Boundary edges of extrusions
are preserved by inserting the sketched polyline directly into the mesh using constrained
Delaunay triangulation [Shewchuk 1996]. To create the soft transitions, a smoothed
approximation to the 2D distance field of the boundary contour is generated [Peng et al.
2004; Schmidt et al. 2005], and smoothed distance is then mapped to displacement height.

Also supported is displacement along a user-sketched surface curve. Given a sin-
gle curve, we create a uniform-width “tube” on the surface (Figure 6.10a). A second
curve can be drawn which modulates the displacement height (Figure 6.10b), with an
option to tie displacement radius to height (Figure 6.10c). This last option produces
a variable-width displacement reminiscent of the area-proportional inflation used in the
Teddy system [Igarashi et al. 1999]. These displacements are also defined by a scalar
field, generated by accumulating radial 2D fields placed at regular intervals along the
sketched curve. The combined field is defined as maxi(hi ∗max(1− (di/ri)

2)3, 0)), where
di is the distance to the origin of the ith field, ri is its radius, and hi the height.
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Figure 6.11: A linear extrusion (a) can be converted to a path extrusion by sketching the
path beginning on the extrusion surface (b). The extrusion profile is then swept along the
path (c). The extrusion can be over-sketched to modify the path, and an optional profile
curve (d) can also be added to describe an arbitrary procedural generalized cylinder (e).

Curves can also be used to insert sharp creases into the mesh. To do so, we remove
the square on the (d/r)2 term in the equation above, producing a field with a sharp,
“inverted” falloff region. The crease is defined by a spline curve, but sampled into a
poly-line which is inserted directly into the mesh, again using Delaunay triangulation in
parameter space. This ensures that a sharp edge is produced (Figure 6.10d,e).

Generalized Displacement

Although the techniques described above provide a wide range of modeling functionality,
they only displace the surface along linear vectors (surface normal, constant vector, and
so on). More powerful procedural editing can be formulated in terms of displacement
along 3D curves.

In the Surface Tree modeler, a linear extrusion can be extended along a curved path
by drawing the path and selecting the resulting suggestion icon. The path can be edited
by oversketching from the current viewpoint. A tapering parameter allows the user to
linearly vary the scale of the 2D template polygon along the length of the extrusion.
A second curve can optionally be drawn alongside the first to define a profile function,
turning a simple extrusion into a flexible generalized cylinder (Figure 6.11).

Holes and Handles

As I have previously discussed, the Surface Tree can support the creation of topolog-
ical holes and handles. In the editing tool I have implemented support for creating
hole and handle Parts that are isomorphic to cylinders, ie with two disjoint boundary
loops. This involves two separate decals, each of which create an opening in the man-
ifold (Figure 6.12b-c). These 2D holes are then connected together with a generalized
cylinder, resulting in a 3D topological hole or handle (Figure 6.12d-e). Unlike volumet-
ric approaches to topological modification, which require consistent inside/outside spatial
partitioning, this manifold-stitching approach can also be applied to surface patches with
boundaries (Figure 6.12f).

The hole/handle creation interface is similar to path extrusion - a linear extrusion is
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Figure 6.12: A topogical hole or handle node (a) takes two parameterized regions as
input. Within these parameterized regions are the boundary curves (b), which are used
to cut holes in the mesh (c). A generalized cylinder then attaches one side of the handle
to the other (d-e). Each side of the handle can have a different profile curve (f). A
topological hole (g) is simply a handle that appears to be “inside” the surface.

Figure 6.13: The model on the left was created by adding features to an initial sphere.
In the next two images, these procedural Parts are independently manipulated.

first created, and then a line drawn from it to another point on the surface. Selecting the
resulting suggestion icon creates a hole or handle with the same contour at both ends.
Alternately, the user can draw a second contour, in which case we interpolate between
the two along the handle path (Figure 6.12f).

6.6.2 Procedural Interactions

As the artist creates features using the procedural tools described above, nodes are trans-
parently added to a Surface Tree, which effectively catalogs the construction history of
the model. The main reason to build and store this tree is to support the types of
operations described in Section 3.3, such structured manipulation.

Some basic structured manipulations are shown in Figure 6.13. This face model was
created by adding a series of Parts to an initial sphere. As the Parts are represented
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Figure 6.14: In (a), two copies of a curve extrusion are linked to the original, such
that even if their profile curves are specified independently, a change to the original path
propagates to the copies (b). In (c) the copies are sequentially linked, with the radius
functionally defined to be half the size of the parent (d).

procedurally, we can manipulate them independently and arbitrarily. In the middle
image the eye, nose, and brow Parts are exaggerated in scale, while in right image the
underlying sphere is made smaller. In this latter case, all of the overlapping Parts must
be procedurally recomputed. In a traditional global mesh representation, it would simply
not be possible to express this change without essentially rebuilding the entire model.
With a Surface Tree, it takes only a few seconds.

Once a Surface Tree structure structure is available, we can easily implement higher-
level operations like copy-and-paste of Part nodes, even if the desired Parts lie “un-
derneath” overlapping layers. In contrast to the mesh drag-and-drop tool I previously
presented, these copies become new Surface Tree nodes. Even more significant is that
these copied nodes can be linked, such that when the parameters of one node are modi-
fied, linked copies are automatically updated (Figure 6.14). This linking can be selective,
such that some parameters are linked but not others.

Procedural manipulation of the Surface Tree introduces a new set of visualization and
interaction problems that have yet to be explored. In my tool, the user can select an
existing node for manipulation by clicking on its support region. If multiple nodes lie
under the cursor, repeated clicking cycles through them. The selected node is highlighted,
and all overlapping layers are rendered transparently (Figure 6.15a-b). This gives the user
some sense of the Surface Tree structure, but the precise ordering and branch structure is
still opaque. An independent tree view could help, but it would be more desirable if the
structure could be directly visualized in the 3D view. In other work I have made some
progress towards visualizing overlapping internal structures in 3D models, by rendering
solid model Parts in a “sketchy” style [Schmidt et al. 2007]. These visual scaffolds
should be adaptable to the overlapping hierarchical Parts in Surface Trees.

As I previously discussed, the computational cost of recomputing the output of a
Surface Tree increases with the depth of the node being modified. To provide interactive
feedback, overlapping nodes must be dynamically re-evaluated and rendered as the user
manipulates a selected node. To guarantee rapid feedback, in my interactive modeling
tool I limited re-evaluation of overlapping layers. Essentially, at each frame a timer is
started, and tree re-evaluation is halted when a quarter of a second has elapsed. The full
tree update is deferred until the user completes the manipulation (Figure 6.15c-d). I do
note that this can be problematic if one wishes to make changes relative to other visual
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Figure 6.15: The support region of an edit node is highlighted when it is selected (a),
and all overlapping layers are rendered as transparent (b). Computation of layers in (c)
can be deferred as the user manipulates an underlying layer (d) to maintain a minimum
interactive frame-rate.

elements, which may not be visible once the manipulation begins.

6.6.3 Results and Discussion

Figure 6.16 displays several completely procedural surface models created with the Sur-
face Tree editor I have described in this section. It is important to note that in this tool,
Parts are created using simple sketch-based operations that can only express limited ge-
ometric complexity. Hence, we cannot expect the model complexity to reach that of the
results created by dragging-and-dropping existing mesh Parts. However, each feature
of these surfaces is a procedural Part and hence can be independently manipulated.

One may note that in the discussion of this system, I have neglected to mention
secondary branches. This is due to limitations of the ShapeShop interface, which does
not have support for editing independent Part assemblies. Hence, each Surface Tree
tool simply appends a node to a sequential list. I did perform one simple experiment
to demonstrate that secondary branches were possible. If the current tree output has a
boundary, it can be encapsulated as a secondary branch and inserted back into itself using
a local geometric texturing operation. An example is shown in Figure 6.17. This subtree
is not a copy, but rather a procedural instancing, so changes to the original portion also
propagate to the duplicate.

One limitation of the system is that the response time of the system varies depending
on which edit is being manipulated, as the computational cost of a tree update depends
on the layer depth of the modified node. The cost of updating a node is highly variable
- major factors include the resolution of the input mesh, the size of the node support
region, and the level of refinement necessary to faithfully represent the edit. Generally,
the 3-5 edits at the top of the tree are interactive at moderate resolutions. Beyond
that depth, the partial-update scheme described above (Figure 6.15) comes into effect,
reducing visual fidelity.

As I noted above, the Surface Tree implementation in ShapeShop is based on displacement-
style edits. I have also developed a stand-alone Surface Tree viewer, which can load a
sequence of arbitrarily-complex layered Parts and attach them using COILS-based de-
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Figure 6.16: Results created with our Surface Tree-based 3D modeling tool. The top
row shows several completed examples, while the bottom row demonstrates the creation
sequence for a simple head model.

formation nodes. A basic example is shown in Figure 6.18, where I have used the drag-
and-drop tool (Section 5.9) to “reverse-engineer” several Parts of the Stanford Bunny.
Once these parts are layered in a Surface Tree, they can be independently manipulated.
It would be straightforward to allow other Parts to be imported via drag-and-drop,
although this has not been implemented.

6.7 Conclusion

In this chapter I have constructed a hierarchical, procedural representation of a 3D sur-
face, the Surface Tree. This representation has the potential to greatly increase the power
of surface modeling tools available to designers, allowing them to “go back in time” and
non-destructively modify any modeling decisions made in the past. In contrast to a
static surface mesh, this procedural hierarchy makes iterative design much more efficient.
Designers can easily explore variations without having to discard existing work.

After developing both the Surface Tree data structures and a strategy for implement-
ing them, I described a prototype Surface Tree modeling tool. Although my current
system has many limitations, it does allow one to create a 3D model which is completely
procedural - each surface modification can be interactively modified, and the rest of the
tree is updated without user intervention. Sketched holes and handles enable procedu-
ral topology change without resorting to a volumetric approach, and procedurally-linked
nodes allow for complex dynamic surface modifications to be controlled by simple pa-
rameters.

The main practical limitation of the Surface Tree is that it is very computationally
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Figure 6.17: The three-node Surface Tree in (a) contains a base plane and two layered
bumps. This entire tree can be instanced as a secondary branch, which is then (b) ap-
pended onto the main tree. This instancing is “live”, so (c) modifying any of the original
nodes propagates to the copy.

Figure 6.18: A surface is segmented into a set of Parts(a), which are then layered in
Surface Tree Viewer (b). The tree nodes can be manipulated to make a new model (c).
Here the head has been rotated and scaled up, and the ears scaled down and repositioned.

intensive. As in complex solid models, “rebuilds” of significant portions of the tree
could easily take minutes or even hours. The cost of tree updates is exacerbated by
the dependency structure of the tree. If node A is an input to node B, it will always
be applied before B. Hence, evaluation of the primary branch is inherently sequential.
However, if the input regions of A and B are disjoint, then B is not actually dependent
on A, and they could be computed in parallel. For example, the ears on a head model
are unlikely to interfere with eachother.

One way to achieve this parallel computation would be to modify the interface, so that
the user can create layers of nodes that cannot overlap. The actual Surface Tree could
then be automatically generated from the layer structure. Artists may find this sort of
layer metaphor more intuitive, as it is very similar to the layering components of vector-
graphic and image editing tools. In this layer-based approach, node anchoring could also
be made more explicit, which would also make the model structure more transparent.

Another alternative to enable parallel node evaluation would be to dynamically par-
tition the input surface as the tree is created. The partitions would only need to be
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integrated if some later node overlapped a partition boundary. Determining the parti-
tioning could be quite expensive, although as it would not actually change the visible
surface, it could be done in idle time.

Another interesting problem is whether a sequence of edits can be efficiently collapsed
into a single node without losing too much fidelity. For example, if a sequence of nodes
all lie within some bounded region, and we wish to modify the underlying mesh, then it
is possible to pre-compute the difference between the output of this set of nodes and the
underlying patch. We could then approximate the output of these nodes by rewriting
them as a single node which deforms the pre-computed surface using the COILS deformer.
This is essentially a dynamic cache node, such as those proposed for use in hierarchical
implicit modeling [Schmidt et al. 2005]. As in that case, some visual fidelity would be
lost, but from the user point-of-view it would likely be a reasonable trade-off if the same
order-of-magnitude speedup were to result.



Chapter 7

Evaluation

Some material in this chapter is derived from the article “Drag, Drop, and Clone: An
Interactive Interface for Surface Composition” authored by Ryan Schmidt and Karan
Singh [Schmidt and Singh 2010c]. The text and images reproduced here are used with
permission from my co-author.

7.1 Introduction

In the preceding chapters I have developed a hierarchical, procedural Part-based surface
representation, and applied this infrastructure in three novel artist-oriented 3D design
interfaces. In each chapter I considered the mathematical properties of each novel algo-
rithm or technique, and compared its merits relative to existing works. However, in the
context of this thesis, the larger question is whether Part-based modeling could enhance
interactive 3D surface design workflows. Essentially, the pertinent question here whether
or not the Part-based approach is useful.

An obvious approach to demonstrating the utility of Part-based interactions would
be through some sort of “user study”, as is used when evaluating new interface widgets
in the HCI community. After extensive consideration, I have come to the conclusion that
these sorts of very narrow controlled experiments are not appropriate for the interfaces
I have proposed. The cornerstone of such user studies is the carefully-measured and
controlled variation of a small set of parameters. However, the novel modeling tools I have
described are still prototypes, involving many complex interactions and user interface
elements that combine to provide a compelling modeling experience across a wide range of
tasks. Results obtained by a reduction to a simplified, measurable task cannot be assumed
to generalize to this overall experience. In addition, comparisons to other modeling
tools would ultimately be apples-to-oranges; no interfaces with even remotely similar
capabilities is currently available.

So how are we to determine whether or not the tools I have developed can be applied
to any useful effect in 3D design? In the field of HCI, Greenberg and Buxton [Greenberg
and Buxton 2008] have considered the difficulty of evaluating novel interface prototypes,
and proposed some alternatives to user studies. They note that in design fields, design
critiques are a widely accepted way for designers to evaluate eachothers work. Essentially,
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this approach involves collecting the opinions of experts. As I will explain below, I have
collected a wide range of feedback on the utility of Part-based modeling, focusing on
the simple drag-and-drop Part composition of Chapter 5.

Another important higher-level issue that has yet to be discussed is the representa-
tional capability of my Part definition. The approach I have presented cannot represent
any Part. Later in this chapter I will consider what classes of surfaces work well as
Parts in my system, and what classes do not.

7.2 Utility of Part-Based Modeling

As I have previously explained, there are theoretical and philosophical reasons for devising
Part-based surface representations. It is somehow aesthetically incongruous that we can
talk about the Parts of a surface, but not be able to turn our words into a concrete
mathematical form. But is there a practical reason to do so? In Chapter 3 I made the case
that there ought to be, by considering some of the current limitations of surface modeling
when compared to solid modeling. But claiming that artists should want Part-based
interaction is not the same as showing that they do.

To explore whether artists would actually find my tools useful, I released each of them
publicly on the internet, free of charge. The decal-based texturing tool (Section 4.6) and
sketch-based Surface Tree modeling tool (Section 6.6) were integrated into the ShapeShop
modeling system [Schmidt et al. 2005]. The Part drag-and-drop interface of Section 5.9
was released as part of stand-alone tool called meshmixer.

Although the decal texturing and surface tree editors were released much earlier (2006
and 2008, respectively), they remain largely undocumented and unsupported. As a result,
there is little I can report about these techniques. I have been contacted by 3D artists
who have seen videos of the tools and wish to use them, but to date I have received no
significant feedback from these users. The most limiting factor is that neither of these
tools can be integrated into an artist’s daily workflow. The Surface Tree models one
can create within ShapeShop must be “baked” into a static mesh to be exported, at
which point all the benefits of Part-based design are lost. Decal texturing has a similar
problem - since no other tool supports this type of texture representation, there is again
no “downstream support” in professional graphics pipelines.

Meshmixer, on the other hand, is designed to work with existing meshes, of which
there is a vast abundance. Similar “easy-to-use” tools for re-using these models simply
do not exist. As a result, meshmixer was widely publicized in the graphics industry press,
blogs, and message boards, has been downloaded thousands of times, and appears to be
in active use on a daily basis. This broad distribution has generated a large volume of
user feedback, which can inform future work on Part-based interaction.

Before I begin, I must mention two important caveats about artist feedback. The first
is that most artists spend the majority of their time working with a small set tools with
highly similar, almost standardized interfaces. This appears to lead to a natural tendency
to evaluate new tools solely with respect to their familiar workflows. Second, because
industry workflows are also so regimented, novel modeling prototypes generally cannot
be used in day-to-day work, and hence most judgments (both positive and negative) are
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heavily colored by early experiences. The reader should keep this in mind when reading
the following section.

7.2.1 meshmixer Distribution and Usage

I distributed a basic version of my mesh drag-and-drop tool meshmixer (Section 5.9) to
a wide community of computer graphics hobbyists and professionals, by making it freely
available on a public website (http://www.meshmixer.com). This distribution began in
early December of 2009 and is currently ongoing. Initially minimal instructional material
was provided (a 2-minute demonstration video and a 4-minute tutorial video with text
captions) An update to the software (meshmixer02) was released in March 2010, and at
the same time a set of tutorials was added to the website. Although I offered technical
support via e-mail and an online forum, most requests involved advanced uses of our
tool or software bugs. I have yet to encounter a user who was confused about the basic
operation of the drag-and-drop interface.

I will now discuss some usage statistics on meshmixer and its website. This data was
collected using Google Analytics [Google Inc. 2010]. At the time of writing (August
1st, 2010) the meshmixer website has received approximately 40,000 visits, of which 68%
were “new” visitors who had not previously viewed the website1.

The combined total number of downloads for the two released versions from the
meshmixer website is 4,528 ( 3,582 for meshmixer01 and 946 for meshmixer02 ). However,
these numbers only count clicks on the “download” page, not direct links to the installer
executables (which have also been mirrored by several sources).

To communicate with potential meshmixer users, a feature was added to the tool
which downloads a “news” webpage from the meshmixer website each time it is run. The
purpose of this page is to inform users about new versions, tutorials, and so on, but also
has the serendipitous effect of allowing me to determine how often the meshmixer binary
is executed2. To date, this page has been downloaded 7,557 times. More importantly,
though, 5,448 (72%) of these downloads are from “returning visitors”. This statistic
implies that the majority of executions come from users who have executed the software
more than once.

The returning visitors statistic is significant, because it is often the case that artists
who download this type of prototype tool will run it only once, to “try it out” before
deciding that it is not worth investing the time to learn. That a majority of executions
are by repeat users suggest that at least some are finding meshmixer useful. It should be
noted, however, that my web-statistics methodology cannot differentiate between whether
a very small percentage of downloaders are very frequent users, or whether a larger pool
are occasional users. Hence, the size and proportion of this returning-user pool remains
unknown.

1Google Analytics uses “cookies” to track website traffic, and it is generally the case that cookies
are not shared between web browsers or accounts on different systems. So it is possible for a unique
individual to be counted as a visitor multiple times.

2This webpage can only be accessed if user is connected to the internet, so the statistics here are
conservative.
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Month Downloads Executions Repeat Executions (%)
April 194 569 62%
May 166 460 74%
June 283 802 72%
July 284 880 75%

Table 7.1: Meshmixer download and usage statistics for four months in 2010

As I mentioned, meshmixer received a large amount of initial publicity, which has
naturally tapered off over time. So it is reasonable to wonder whether the above statistics
still hold. In Table 7.1 I provide some statistics for four recent months in 2010 We can
draw two important conclusions from this data. First, repeat use of meshmixer remains
relatively consistent, and second, the number of executions is significantly larger than
the number of downloads. This again indicates that artists are indeed using the tool.

7.2.2 Artist Feedback

The release of meshmixer generated a considerable amount of public discussion in online
message boards, blogs, and industry news websites. As of writing (August 1, 2010), a
Google query for the term “meshmixer” returns 19,500 results. I browsed the first 200
of these results, which mostly are web forum discussions, to get a sense for how the
meshmixer interface is viewed by artists. I note that over 95% of these 200 pages do
actually pertain to my meshmixer project, and that at least half are in languages other
than English (and hence were ignored). Many of the pages include a single forum post,
but several contain extensive discussion of meshmixer. In this section I will discuss this
body of feedback, first by attempting to extract some overall themes from the data, and
then by examining specific comments.

Analysis of Forum Comments

Attempting to draw conclusions from written human feedback is largely a subjective task.
Grounded Theory Methods (GTM) [Glaser and Strauss 1967] are widely accepted in the
social sciences as a method of making subjective data exploration more rigorous. GTM
are not meant to test any specific hypothesis, but rather are a set of practices that are
meant to help a researcher construct theories from the data. These theories are then said
to emerge from the data, and be grounded in the data.

Grounded Theory Methods are complex, and there are various schools of thought
about when and how they should be used. Since I am not really attempting to formulate
a theory of how artists feel about meshmixer, but simply provide the reader with a
sense of the data, a full GTM process seems unnecessary. However, the early stages
of GTM involve coding, in which the data is repeatedly abstracted until key concepts
emerge [Muller and Kogan 2010]. Coding is relatively accessible even to GTM novices
(such as the author), and it is this process that I have attempted to apply.

My data set consists of 131 comments, extracted from web forums and comment
threads. These comments range from a single word (“Brilliant.”) to short paragraphs
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(100 words). Because the data set is relatively small, for the initial open coding step, I
simply extracted all the words and phrases that seemed to be possibly relevant to each
authors’ opinion or experience of meshmixer. After grouping very similar words and
phrases, I was left with 69 codes. The axial coding step then involves grouping these
codes into higher-level categories. In this step I found 9 main themes, shown in the table
below and ordered by frequency

Axial Code Example Words and Phrases
General Impression cool, awesome, great, wow, excellent, gorgeous, insane
Purpose combine meshes, merging, mash up, assembling, library of parts
Novelty innovative, interesting, unique, brilliant, amazing, nice concept
Utility useful, not useful, practical, handy, save time
Usability easy, simple, intuitive, usable, interactive, crashed
Topology topology, quads, triangulation, edge flow, UVs, clean-up
Integration workflow, integrate, sculptris, blender, ZBrush, 3DSMax
Enjoyment fun, hilarious
Cost free, freeware

The most frequently occurring axial code is the General Impression, where the comment
author simply presents an opinion about meshmixer. These comments were overwhelm-
ingly positive - overall, 76% of the comments were explicitly positive, and 64 specifically
used terms like those mentioned in the table (“cool”, “awesome”, and so on). Of the
remaining 24%, 15 had some negative or critical content, and the remainder were mainly
explanatory (describing how to rotate the camera, for example).

The rest of the codes are relatively straightforward, and in some sense confirm my
belief that meshmixer is a new, useful, and usable tool. I will consider some of these
in more detail in the next section. One question was whether artists would “get” the
motivation for the tool. However, the frequency of the Purpose code made it clear that
artists could immediately see what meshmixer was meant to do. Most comments of this
type were explanatory, for example the initial post in a forum thread that introduced
meshmixer, which would then be followed by other discussion.

As negative or critical feedback was relatively infrequent, I have given these comments
particular attention, both for for this evaluation and as a means to learn how to improve
the tool. Of these few comments, the main focus was on topological issues, which will be
discussed in depth in the following section. Software quality issues were also mentioned
several times, focusing on crashes and the handling of very large meshes. The main
other problem that some commenters had with meshmixer was that the “cut-and-paste”
modeling capabilities of meshmixer may negatively impact the creativity of artists, who
presumably could be pressured by managers to copy or re-use existing models instead of
creating new ones.

Major Themes in the Forum Comments

In the following I will quote from these unsolicited public comments to give a glimpse
into the public perception of meshmixer. Note that most internet forum posts do not
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have exemplary spelling or grammar. Below I have reproduced the comments verbatim,
except where noted.

In concert with the meshmixer software release, a demonstration video was posted on
the video-sharing website YouTube3. In many cases, comments were based on this video
alone. A frequent reaction was one of surprise and disbelief:

• “I don’t believe what I just saw! is this thing for real?”

• “This looks to good to be true, I just have to try this out.”

• “This is awesome! I can’t believe I just saw it! Such a clever idea, wonder why no
one had ever come up with it.”

This reaction is encouraging because it confirmed our belief that this style of interactive,
unconstrained Part drag-and-drop is not only a highly novel interaction, but also one
that would appeal to artists. More encouraging was that those who appeared to have
downloaded and tried the software remained largely positive:

• “Will have to play with this more... it seems to work quite well.”

• “Very cool! It works a lot better than I’ve expected.”

• “Meshmixer is pretty fun. (...) My kids have fun with it too. They can make all
kinds of monsters and creatures.”

I should note that this latter type of response to the actual usage of prototype modeling
tools is the exact opposite of what one typically encounters.

Many authors commented on the usability of meshmixer:

• “This brings us a couple steps closer to a 3D app that our mothers (iow: anyone)
can use”

• “What makes this amazing to me is how easy you can just ’drag’ an object over
another object, and it’ll follow the shape wherever it can.“

• “Its so freaking EASY. Just downloaded it, exported a missilelauncher from blender,
a little getting used to the controls and voila, seamlessly integrated missilebunny”

• “Mr. Potato Head for the 3D printing generation has now officially become trivial.“

These statements support the Part-based abstraction that meshmixer is based on.
Artists clearly recognized the usability benefits of treating the Parts as discrete ob-
jects and insulating the user from the myriad algorithmic details of the drag-and-drop
interaction.

Perhaps the greatest compliment paid to meshmixer is that many 3D practitioners
who tested the software expressed a strong desire for the drag-and-drop technique to be
integrated into commercial tools:

3http://www.youtube.com
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• “Would be awesome if someone could integrate such functionality in the upcoming
blender 2.6”

• “This would open up a lot of new possibilities if it would be integrated into some-
thing like zbrush”

• “If you implement this stuff into 3ds Max... I’d kiss you. Like, seriously.”

Many posts speculated about how meshmixer could be applied to modeling problems
and integrated into existing workflows:

• “seem great idea’s to use in a sculpt modeling workflow.”

• “This looks like a very cool solution for those that like to save time by kit-bashing.”4

• “This is brilliant for organic modeling”

• “That would be a great tool for police sketch artists”

• “I can still see this being INCREDIBLY useful for pre-viz and pre-production work,
storyboarding, animatics etc.”

• “Looks like something to release the inner surrealist in any 3D artist. Something
the Salvador Dalis and H.R. Geigers of digital media would like to have in their
toolbox.”

What is interesting here is the relatively broad range of potential uses, given that mesh-
mixer is essentially a demo of a single interaction technique. This agrees with my propo-
sition that meshmixer’s style of interactive Part-based composition fills a gap in current
modeling tools. Several authors made explicit comments to this effect:

• “I can only imagine how much work that MeshMixer would have saved me over the
years.”

• “Saves a lot of welding.”

• “not only toys, but with some premade 3D-data you can realize complex objects
that are hard to create in conventional CAD-programs”

• “this is like what i always wanted booleans to do!”

The last comment is particularly revealing. Boolean operations are available in many
SubD modeling and sculpting tools, such as Maya and ZBrush, and some authors seemed
to think that meshmixer was simply another Boolean-based tool (“...a very good im-
plementation of a boolean union operation.”) However, artists such as the one above
recognized that the composition approach in meshmixer is tailored to surfaces. The im-
plication here is that while surface modelers clearly desired Boolean-like effects, actual

4The term kit-bashing refers to the practice of assembling a model by combining existing pieces.
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solid modeling operators are unsatisfactory, presumably because they don’t take the sur-
face shape into account. Composition tools which respect the nature of surface Parts
will likely be more widely accepted.

It seems clear that one of the most immediate benefits of supporting Parts in model-
ing tools is the ability to easily mix-and-match from existing models. A variety of posts
anticipated these Part-based compositional workflows:

• “Make many little pieces in Sculptris, join in Meshmixer, then back to Sculptris
for reshaping, smoothing, reduction and UVing. Then to Carrara for rigging, if
necessary, and rendering.”

• “So (in some time) all you need is a lot of model libraries to mix and match as you
see fit. You know, grab an eye here, a nose there, a couple of fingers and a head,
place it on a kangaroo body and you are set to go.”

Although some lamented how this might change the practice of modeling:

• “...seems like modelling from scratch might become a lost art with software like
that!”

I previously mentioned the video game Spore, in which players assemble their own
characters using a simple Part-based modeling tool [Eletronic Arts Inc. 2010]. Several
posts noted the similarity between meshmixer and Spore’s creature creator:

• “Didn’t know about Meshmixer. It’s really fun, reminds me the assembling creature
stuff you can do in Spore”

• “I’ve wondered why this wasn’t a modeling tool ever since I saw something along
the lines of this in Spore.”

Note that to provide their Part-based interface, the developers of Spore manually de-
signed each Part to ensure compatibility. As these comments make clear, meshmixer
provides a similar modeling experience to the artist, but without requiring authored
Parts.

Excluding installation issues, crashes, and poorly-documented user interface controls,
the most frequent complaint that was raised in discussions among 3D artists was about
mesh topology. In current practice, professional artists rely almost exclusively on carefully
designed quad meshes for production models. As noted below, these quad meshes contain
carefully designed edge loops which support high-quality re-posing and animation. The
regions where meshmixer introduces triangles to fill holes or stitch boundaries must be
manually re-topologized. Some artists felt that this was a major limitation:

• “the resulting mesh needs a LOT of cleanup to work in a sub-d surface pipeline
which requires close attention to topology to avoid nasty surface artifacts when
rendered, not to mention the extra problems bad topology causes at UV mapping
time and certainly animation time, as edge flow has a very strong affect on the way
a mesh deforms when animated.”
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• “it’s an interesting idea....but I’d be wary of thinking this is as useful as it seems...doing
this kind of cut+paste is easy - it’s the topology of the result that is important...”

This quad-topology question has come up repeatedly, and does appear to be the most
pressing issue for artists and designers who may wish to use meshmixer. However, in the
same threads where the above comments were made, rebuttals suggested that this topol-
ogy issue may be side-stepped by larger developments in production modeling pipelines:

• “Topology is now a step in the pipeline and is sorted out later once sculpting and
form is completed. It is also probably a mistake to think this is easy as I’ve never
seen it implemented so simply.”

• “Topology can be taken care of at a later date which it seems is how many artists
work these days anyway. They mesh out an idea, form and basic sculpt then retopo
is the next step. Adding this into the equation is no different.”

• “The topology is only an issue if you plan on using the cut and paste live in an
animation. If you just want to work out a concept, topology can be figured out
later.”

• “there’s enough re-topo tools around that it’s not a huge issue.”

These comments are important because the need to preserve carefully-designed global
mesh topology is largely at odds with the methods I have proposed in this thesis. Taking
a Part-based approach implicitly means that the artist will work at higher levels of
abstraction than mesh edges and vertices. The above statements indicate that even
though global topology is clearly a concern in current practice, it will not be a major
issue in the future. One user appears to have confirmed this supposition:

• “Put the idea in practice. Took an existing sculpt of mine, removed the head in
Mesh Mixer, removed the toes in Sculptris, and finally generated the topology in
3Dcoat. Took a little trial and error but eventually I got the results I was after.”

Although many of the above comments are highly promising and supportive of my
Part-based approach, most are speculative in nature. As I noted, the majority of artist
feedback is based on initial impressions, and in some cases the author of the post has
clearly only viewed video demonstrations. Hence, a question which remains unanswered
is the long-term utility of meshmixer. I have found several posts similar to the following:

• “I tried Mesh Mixer a long time ago and it’s a nice enough tool but after the initial
’this is fun’ it’s not something I go back to at all really”

These comment suggest that some users have either not been able to integrate meshmixer
into their workflows, or have had no desire to do so. One possible reason is the mesh
topology issue described above.

To date I have little evidence of long-term use of meshmixer. The usage data I
provided above does appear to indicate that users are working with the software, although
there is no way to determine if this repeated use is maintained over time for individual
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users. And I should mention the standard caveat that meshmixer is a research prototype,
prone to crashes and with limited support for the million-poly meshes that many working
artists deal with on a daily basis. Still, the statements I have quoted here strongly indicate
that the style of Part-based interaction in meshmixer fills a void in the current modeling
landscape. If not meshmixer itself, than some tool like it would clearly be of significant
value to professional modelers.

I will close with an excerpt from detailed feedback provided by a modeling industry
expert with extensive experience, who had this to say about meshmixer:

“[This] is one of the most interesting research software applications we have
come across in many years. Ultimately creating good 3D models is actually
an artistic and design process not a scientific and mathematical process. This
is the only application that we have ever seen where we can just load up parts
and add them together interactively. It gives the artist a freedom that has
not existed to date ... and returns a very enjoyable creative spontaneity.”

Limitations of Artist Feedback Methodology

In the above evaluation I have taken the approach of collecting largely unsolicited and
unstructured feedback from a wide range of potential users. I found this approach prefer-
able to more structured feedback such as a user survey because it inherently avoids the
possibility of unintentionally asking the artist to “tell me what I want to hear” (ie the
good subject phenomenon). It also makes it possible to collect feedback on a broader
range of topics, including those I had not anticipated.

A valid critique of the unsolicited feedback methodology, however, is that large cate-
gories of potential users remain unrepresented. First, there is the set of users who would
generally concur with the feedback I have presented above, but are not prone to com-
menting on internet forums or directly contacting software authors. We can only assume
that the contributions of these artists would not significantly change the distribution
of comments as provided above. More significantly, there are the artists who found ei-
ther the video presentation or software tool to be so fundamentally unapealing as to not
warrant the provision of any feedback at all. This “non-user” population can only be
explored in a more structured environment, where sufficient random sampling will ensure
that such users are represented in their statistical proportion.

One potential way to explore this user base outside of a controlled environment would
be to further instrument the meshmixer software. For example, if the user opens mesh-
mixer, tests it for a few minutes, and then closes it and does not return to it for several
weeks, we could have polled the user with a questionnaire about their experiences. Pre-
sumably some of these users would be altruistic enough to complete such a survey, but
if not, some sort of reward could be provided. Note that this tracking of session lengths
and frequency would also be useful to further map the usage of the tool by those who do
find it useful or compelling.
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Figure 7.1: We assembled 8 high-resolution components (a) into a manifold surface (b),
spending 5-10 minutes per part. Stitching between varying levels of detail was handled
automatically (c,top), and relatively accurate, rigid alignment with original Parts (pur-
ple) was achievable without significant difficultly (c, bottom)). A Part-based approach
allows components to be easily replaced, and if the model is decomposed into additional
Parts, even re-posed (d).

7.2.3 Specific Applications

The critical response to meshmixer from artists and designers was overwhelmingly pos-
itive. We received feedback from a wide range of 3D practitioners, who wished to use
meshmixer in many more ways than we had imagined. One aspect of this feedback which
was particularly interesting was the variation in workflows and diversity of applications
that formed sets of recurring tasks for different user groups. I will now describe how
Part-based techniques could be integrated into some of these workflows.

Part Assembly I received a significant amount of feedback from special effects artists
and product designers who must assemble overlapping 3D scans of physical objects into
a single 3D model. Complex objects are often scanned in parts, with varying levels of
resolution used for different regions. Assembly of these scans into a consistent surface is
a tedious process, particularly if the object is a human who moves between scans.

A professional modeling studio provided a sample assembly task, shown in Figure 7.1,
which I completed using meshmixer in under an hour. In terms of assembly quality, fair
transitions between the different parts were achieved without difficulty, and although the
Part attachment is based on deformation, minimal tweaking of the rigidity parameters
was required to achieve relatively good alignment with the original parts.

Figure 7.1d demonstrates other applications of Part-based design in assembly work-
flows. Since the Parts are merged in a way that takes surface shape into account,
alternate Parts can easily be swapped in, such as the human hand. Similarly, by man-
ually decomposing the model into additional Parts, I was able to re-pose it in a rela-
tively convincing (and largely volume-preserving) way. In this example each Partbased
manipulation was baked in after completion. But nothing would prevent this Part de-
composition from being captured in a Surface Tree, at which point it would have been
possible to specify an animation of the arm simply by dragging the Parts.

Related to the scan assembly problem is that of of assembling specific models from part
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Figure 7.2: Each ear on the left took only a few seconds to position, making it efficient
to experiment with design variations.

catalogs, in particular to provide customized human models. In this case the component
meshes must be deformed to conform to the new surface, which is handled automatically
by my surface Part. In addition, the complexity of current tools means that the customer
must pick parts from images and then specify design changes to an artist. With a Part-
based interface, the customer could efficiently experiment with different character designs,
reducing the need for expert guidance. A mock-up of this sort of scenario is shown in
Figure 7.2. Note again that picking a set of Parts implicitly defines a Surface Tree, at
which point the customer could dynamically manipulate the properties of each shape on
the combined surface.

Scan Repair The scan data in Part assembly tasks is generally of quite high quality,
where great care is taken to capture all the important surface details. Perhaps the most
enthusiastic testers of meshmixer were artists working with more ad-hoc meshed scan
data. These scans rarely capture all the necessary surface detail, and often occlusion or
motion results in holes and incorrect forms. Cleaning up this data is a tedious manual
process. Users noted that being able to simply select and drag off a hole, leaving a
fair surface behind, was itself a major improvement to their workflow. Similarly, filling
in missing regions often requires the work of a skilled modeler. With a Part-based
interface, one can drag in Parts from regions where the scan is more accurate, or from
other models, allowing invalid regions to be efficiently repaired (Figure 7.3).

Rapid Base-Mesh Creation As I have discussed, in modern 3D modeling workflows,
3D sculpting tools are used to paint extreme levels of detail onto simplified base-meshes.
Creating the necessary base-mesh for a sculpting task can be time consuming, and often
3D sculptors resort to stock models which must then be deformed or otherwise edited
into a more suitable form. With a Part-based design tool, one could quickly assemble a
suitable base-mesh from a library of stock parts. Furthermore, this assembly process can
be captured in a Surface Tree, which would then allow the artist to later make procedural
changes to Parts of the base mesh and have the brushed details update automatically. If
the quad-mesh topology issues can be resolved to some degree, then Partdrag-and-drop
would also make it practical to drop in stock parts as needed, or even remove and replace
an existing part when a design variation proves unsuccessful.
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Figure 7.3: Scanned data often includes regions with holes or missing detail (a). With
meshmixer we can quickly drag off the invalid regions, leaving smooth fill surfaces behind
(b). The missing detail can then be filled in using more accurate Parts(c).

Model Pre-Visualization A growing area of application for computer graphics in film
and entertainment industries is pre-visualization (or previz ). 3D mock-ups with varying
levels of fidelity are now created for both digital and live-action shots, and used for
virtually every production task, from basic staging and art direction to detailed camera,
lighting, and rendering setup. Creating suitable models for higher-fidelity previz using
digital sculpting tools is a time consuming and expensive process, as the models will
ultimately be discarded. Several 3D artists noted that our composition tools would make
modeling for previz much more efficient. I experimented with this use-case in Figure 7.4,
creating a reasonably detailed lizard model. The final model was created in well under
an hour, but would suffice for most digital mock-up purposes.

As in the case of Partcatalogs, Partdrag-and-drop makes composition simple enough
that it may be possible for directors to explore the space of models themselves, rather
than having to rely on an artist to translate ideas into 3D. In a similar vein, directors
often want to see variations on a theme for a particular model. Instead of creating many
independent models from scratch, an artist could author a parameterized Surface Tree
model, which would then allow for much more efficient and finer-grained exploration of
the design space.

Rapid Prototyping 3D printing has become relatively commonplace in many areas
of industrial design, however realizing a 3D model as a physical object introduces its own
set of particular challenges. For example, a model may need to be significantly modified
so that parts can actually be assembled after printing. A related problem is that many
3D models which can be animated on the computer will either fall to pieces or be fixed in
place when fabricated. Attaching the necessary fasteners and hinges via CSG operations
involves tedious 3D manipulation and tends to result in sharp edges. Given a library
of simple assembly connector surfaces, one could use Partcomposition to quickly create
assemblies suitable for fabrication. Some examples are shown in Figure 7.5.
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Figure 7.4: To mock up a lizard model, I first sculpted a sphere into a coarse body shape
(a) then transferred the more complex features from other models (b). Next I used a
brushing tool to copy details from a rough, scale-like surface (c), then added a few more
parts and rendered with a procedural texture (d). No more than 10 minutes was spent on
each step.

7.3 Representational Capability

The Part definition I have formulated, the DEM/COILS approach to implementing it,
and the procedural Surface Tree structure, each have a variety of limitations. Some of
these follow directly from limitations of the DEM and COILS techniques, while others
are more fundamental.

7.3.1 High-Curvature Surface Regions

In general, I have assumed that it is possible to consistently generate relatively low-
distortion parameterizations of the Part domain on the target surface. However, the
fundamental properties of normal coordinates (Section 4.2) guarantee that the DEM will
significantly deform across regions of highly varying curvature, and eventually fold-over
at the cut loci, where the marching geodesic front intersects itself. These self-intersections

Figure 7.5: Using a few parts (a) and a library of simple connectors (b), a static model
was converted into a clock with a hinge in the hour hand, which allows time zone changes
by bending the arm (c). A physical prototype of this clock was then fabricated with a 3D
printer (d). In (e-f) a connector is dropped on to an existing model, creating an odd but
functional Christmas tree ornament. (The Dali Clock was designed by Karan Singh.)
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can happen at relatively small geodesic radii if the surface has wide variations in curva-
ture. A related problem occurs when the marching geodesic front intersects itself, which
is relatively common on surfaces with many protruding features. In this case the Part
domain is no longer a disc, but also no longer has a unique parameterization.

Assuming the Part domain is cut into a topological disc, more robust global opti-
mization approaches can avoid these foldovers, at the cost of higher internal distortion,
which will in turn deform the Part boundary in unexpected ways. Fundamentally, this
is an unresolvable situation - if the Part domain is defined by a fixed mapping from a pa-
rameter space, distortion is guaranteed. Similarly, any use of a planar parameterization
implicitly enforces the requirement that the part domain is a topological disc.

It seems difficult to devise Part-based interactions which support generalized trans-
port that are not dependent on a parameterization. However, one interesting direction for
future work would be to post-process the Part domain on the target surface, to improve
preservation of the 2D boundary shape. The boundary rigidity approach of Section 5.9.1
could also be extended, to locally optimize regions of the boundary which are highly
deformed in 3D. It is conceivable that this may lead to a way to represent the boundary
as a sort of “magnetic wire”, allowing it to be transferred from one surface to another
without the need for a parameterization.

7.3.2 Part Domain Shape

My general strategy for representing an arbitrary surface region is to embed it in a
parameterized geodesic disc. This approach assumes that the Part domain is efficiently
represented by a geodesic disc - ie it is be bounded by a roughly convex polygon with an
aspect ratio relatively close to 1. However, some Parts an artist may wish to use do not
fit this restriction. For example, most designers would consider a feature line running the
length of a car to be a single Part but my approach would not be particularly efficient
to represent it. Even more problematic is that the parameterization of the large geodesic
disc that must be grown to contain a long, skinny Part is much more likely to have
foldovers or self-intersections.

A clear alternative would be to directly represent the Part boundary, rather than a
point-with-geodesic-radius encoding. However, as I discussed in Section 3.6.1, this will
significantly complicate the process of moving a Part from one location to another.
While reasonably rigid surface transport could be computed via vector fields [Crane
et al. 2010], generalized transport from one surface to another seems very difficult. As I
mentioned above, representing the boundary as a 3D curve undergoing rigid deformation
may be a viable approach.

It should be noted that the Surface Tree framework I have constructed does assume
that the Part domain can be represented relative to a single anchor point that can be
embedded in a composite global parameterization. This use of a single point greatly sim-
plifies tree manipulation operations. These operations could perhaps still be implemented
with more complex representations of the boundary, but this will certainly impact the
performance of the Surface Tree.

An alternative to direct representation of the boundary is to devise more complex
encodings than the geodesic disc which are still derived from a single point. Biermann’s
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multiresolution copy-and-paste system [Biermann et al. 2002] proposed a strategy for
representing long-and-skinny regions, and even branching regions. The artist would de-
fine a geodesic “spine” for the Part in the source region. Branches of the spine were
recursively encoded as geodesics in the tangent space, which could then be recomputed on
the target surface. As with Biermann’s other techniques, the parameterization was only
defined once the Part boundary was fixed, which is not as flexible as my intermediate-
parameterization approach, and the artist had to manually define an appropriate spine.
However, it may be possible to adapt this strategy to automatically represent more com-
plex Parts.

Both my geodesic disc encoding, and Biermann’s spine technique, are based on encod-
ing relative to a single point. This has the advantage that it is efficient for the artist to
interact with, as a 2D cursor can be used to unambiguously specify the point. But as the
Part boundary deviates significantly from a roughly circular convex region, it becomes
questionable whether a single point will be flexible enough for the artist. Of course it
is always possible to locally manipulate the Part domain on the target surface after
the initial transfer is applied, as was done in Section 4.6.3. However, with the growing
ubiquity of multitouch interfaces, we now have the potential for the artist to accurately
specify multiple points. The development of a multi-point encoding of a complex Part
boundary would potentially provide the artist with more expressive capabilities. The
same can be said for gestural and sketch-based input.

7.3.3 Parts with Non-Disc Topology

In Section 3.4 I described three forms of the on operator that attaches a Part to another
surface. The Deformation form is a deformation of a disc-shaped region of the mesh,
while the Edit form adds refinement capabilities and more general topologies, and the
Insertion form replaces the Part domain with a new mesh. In Figure 3.8 I showed that
the Insertion form is highly general, supporting a wide variety of topological changes.

It would seem that since the Insertion form is the most capable, the Deformation and
Edit forms are redundant. However, because it is restricted to topological discs, only the
Deformation form is guaranteed to define an invertible mapping between the input and
output surfaces. I took advantage of this in the Surface Tree, where it was necessary
to be able to map anchor points between node input and output surfaces during tree
modifications. Hence, Parts with non-disc topology can restrict the Surface Tree in
certain ways. In particular, when nodes lack a one-to-one mapping between the input
and output surface it may not be possible to consistently update the anchor points of
dependencies after tree modifications. Although I described some stopgap measures to
potentially deal with these issues in an interactive tool in Section 6.3.5, at the conceptual
level my hierarchical representation does not support many topological changes.

Figure 7.6 graphically depicts the possible combinations of Part domain and shape in
two cases: addition of a single Part, as in meshmixer, or hierarchical Part assembly, as
in a surface tree. Note that I had previously stated in Section 3.6.1 that Parts domains
containing topological handles could not be supported by a domain representation based
on parameterization. However, in the table I have indicated partial support. This is
due to the ability of the DEM to “flatten” some handles into the plane when using
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Figure 7.6: Supported combinations of Part domain U (rows) and shape V (columns)
for the addition of a single Part, as in the meshmixer tool, or hierarchical Part assembly
in a surface tree.

smoothed normal fields, as shown in Figure 4.6. All cases with topological handles
are marked as partially-supported for hierarchical Parts because, without a one-to-one
parameterization, we cannot properly anchor Parts on another containing a topological
handle. Parts that are topological handles with multiple boundaries are marked as
partially supported because although they do admit a cylindrical parameterization, there
is no clear mapping from the input domains if the Part is to be removed.

As I have mentioned, the COILS deformer also has some limitations with respect
to non-disc topology. The geodesic front propagation underlying the COILS deformer
will split-and-merge when encountering both “holes” in the manifold, and topological
holes and handles. In both cases the resulting discontinuities will introduce non-smooth
“tears” in the deformation. This issue, and potential solutions, are discussed at length
in Section 5.6.

7.3.4 What makes a good Part?

In this work I have focused on how to represent arbitrary surface Parts, and avoided
making any statements about the quality of individual Parts. However, during the
development of my Part-based modeling tools I have spent an extensive amount of time
experimenting with surface Parts. From this experience, I have drawn some conclusions
that may inform future attempts to at quantifying Part quality, for example in Part
inference techniques such as mesh segmentation.

At the semantic level it is relatively clear that some surface regions make sense as
Parts and others do not. For example, in Figure 7.7a I have clearly selected the face,
while attempting to textually describe the selections in b and c will make it clear that
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Figure 7.7: It seems sensible to consider (a) a Part but not (b) or (c). Note that (d) and
(e) appear to define the same Part as (a). If we infer the underlying smooth surfaces, we
see that (a),(d), and (e) are all very similar, while (b) and (c) have significant differences
around the nose.

they are not particularly atomic Parts. But as these semantics are not available to an
algorithm. Is there anything intrinsically different about these selections that we can
detect?

To see that there is, consider Figure 7.7d and e. I would argue that these are also
valid selections of the face’ Part. But then we must accept that the face does not
actually have a specific boundary. Instead the face blends into the head surface across
some transition region - in other words, the face Partoverlaps the underlying surface.

This observation still does not tell us what is different between the face Part and the
selection in Figure 7.7b. Consider, though, that if the Part blends with the underlying
surface, then to talk about the Part shape we must also consider the underlying surface.
Since this surface is not known, we will have to infer it, and in the absence of any
additional information the simplest assumption to make about this missing surface is
that it is smooth. Then for a given Part boundary, we can infer the missing surface
shape simply by smoothly interpolating the boundary conditions, as I have done in the
bottom row of Figure 7.7.

Comparing these underlying surfaces, we can observe an interesting phenomenon.
For the three different face selections, the inferred head is highly similar in each case.
In contrast, the inferred underlying surfaces for the two non-Partsare quite different,
mainly in the nose region.

So then for this face Part, there is clearly a region within which the Part boundary
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Figure 7.8: Expanding the Part boundary in (a) to that in (b) has a small effect on
the inferred underlying surface. However, expanding a bit too far (c) produces a very
different decomposition, as does (d) even a small change in the other direction.

curve can vary without significantly affecting the inferred underlying shape. This region
is finite, and we can determine its extents by perturbing the boundary and observing how
the underlying surface changes. An example is shown in Figure 7.8, where I created an
initial Part selection and then manually offset the selection via geodesic contours. There
were clear critical values of this offset where the fill surface diverged, which occurred when
the selection boundary reached ridges of significant curvature change.

Assuming that there is a band of finite extent bounding a Part in which the inferred
base surface is consistent, then this region is precisely the overlap between the Part
and base surface. Furthermore, in this overlap region the spatial distance between the
inferred Part and base surfaces is very small. Note that this is exactly what one would
expect if the Part was inserted into the surface with a smoothly-blended transition
region. Hence, as long as the fixed boundary curve resides within this overlap region, the
decomposition into Part and base surfaces will be stable.

Assuming these observations hold, then a given boundary loop on a surface will be
a potential Part boundary if it can be perturbed without causing a significant change
in the inferred underlying surface. It seems relatively straightforward, although perhaps
expensive, to interpret this metric algorithmically. Then to find a surface Parts we
simply need to search through the space of boundary loops and find families of loops
which score highly on this metric. Of course, most local regions of a surface have this
property, so one must also require that the Part interior have some geometrically salient
features. One potential metric in this respect would be to measure the difference between
the Part interior and the inferred fill surface.

An obvious direction for future work would be to try to implement this Part-detection
approach (and then to figure out how to make it efficient). This may result in surface
decompositions that more accurately represent semantic surface Parts. As I have previ-
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ously stated, the disjoint partitions generated by current segmentation algorithms often
do not correspond with intuitive notions of surface Parts. I believe that this is because
surface Parts frequently overlap, and based on the above observations, the Part bound-
ary should reside in this overlap region. But if these overlap regions are the blending
transitions between Part and base surface, then they are precisely the regions where
any notable geometric features will be suppressed. In fact, boundaries that are close to
geometrically salient features such as curvature ridges may not result in particularly good
Part-based modeling components, as I showed in Figure 7.8.



Chapter 8

Conclusion and Future Work

In Chapter 1, I noted that the three main goals of this thesis were to determine how to
define and represent a Part of a 3D surface, construct a hierarchical, procedural Part-
based surface representation, and explore how Part-based techniques can be applied in
3D design tools.

In Chapters 3 to 6 I have developed a framework for Part-based surface modeling.
After deciding on an domain/shape Part decomposition in Chapter 3, I presented the
Discrete Exponential Map (DEM) to encode Part domains on surfaces (Chapter 4), and
the COILS deformer to encode Part shapes (Chapter 5). Then in Chapter 6 I described
the Surface Tree, a hierarchical, procedural, Part-based representation of complex 3D
surface models. Each of these is a novel contribution to the field of shape modeling.

In each of the technical chapters I have also described a novel Part-based 3D de-
sign interface which significantly improves on the capabilities of previous works which
addressed similar problems. My decal texturing tool allows one to quickly assemble
complex surface texture by layering texture Parts. Meshmixer enables artists to mix-
and-match arbitrary surface Parts from existing 3D models with a level of interactivity
and automation that has not been previously demonstrated. And the Surface Tree editor
provides a sketch-based interface for adding layered procedural Parts to an initial base
surface, including topological handle Parts, each of which can then be procedurally
manipulated. I also demonstrated that meshmixer could be re-purposed as a tool for
decomposing an existing model into a Surface Tree.

Perhaps the most pressing question that arises after considering these techniques
and tools is whether they would be of any practical use to artists and designers. Both
meshmixer and my interactive Surface Tree editor involve “drag-and-drop” composition
techniques which combine surface-constrained positioning, global deformation, and ge-
ometry merging into an atomic action controlled by a single parameter: the position of
mouse cursor over the 3D surface.

On the one hand, even casual computer users with no 3D modeling experience have
been able to immediately use this tool. Based on that experience, I claim some level of
success in creating a simple and usable interface for Part-based 3D surface composition.
However, in simplifying the interface to this extent I also significantly constrained part
positioning, deformation, and merging. It was unclear whether such a restricted tool
would be useful to professional practitioners of 3D modeling. Hence, in Chapter 7 I
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explored the utility of this Part-based interaction by performing a a large-scale informal
evaluation to solicit a wide range of feedback.

To carry out this evaluation, I publicly released each of my tools on the internet,
to collect feedback from graphics hobbyists, educators, and industry professionals. The
simple Part composition tool, meshmixer, was the most successful of these systems.
Meshmixer was widely publicized on internet forums, blogs, and news websites, and
remains in active use today. Based on public internet discussions about meshmixer, and
direct feedback I received from artists and designers, I was able to provide evidence that
Part-based interaction provides capabilities which are unavailable in current tools.

I will now discuss a few potential extensions and applications of this work.

Increased Generality While our interactive system demonstrates the potential of
Surface Tree modeling, there is extensive room for improvement. One fundamental limi-
tation is the use of parameterization to encode Part domains. I discussed how we can
replace the DEM with more robust global parameterizations to avoid foldovers, but in
the process will inherit increased parametric “wobbliness”. One possibility would be to
define smoother parameterizations, which sacrifice some local distortions to increase more
global smoothness metrics (perhaps a simple approach would simply be to parameterize
a smoothed version of the surface). Another possibility would be to directly optimize
the Part domain on the surface, to preserve salient geometric properties like boundary
curvature or domain. Hofer [Hofer 2007] surveys a variety of techniques for performing
constrained energy minimization of curves on surfaces.

I also noted one of the major limitations of my Surface Tree, which is that it does
ultimately require some kind of global parameter space in which to anchor each node.
I conjectured that this is an unavoidable side-effect of defining surface Parts, but per-
haps some workaround can be found. Assuming a global parameterization is necessary,
the ideal choice would be a Riemannian manifold structure with a low-distortion atlas.
However, such a general manifold suitable for interactive shape modeling has yet to be
developed. The design of such a global, or even local, manifold parameterization is a key
topic for future study. In particular, characterization of its behavior under deformation
will be critical for predictable interactive surface design.

Parametric Surface Modeling In Chapter 6 I demonstrated some very simple func-
tional modeling operations, like linking parameters between copies of a Part. This
capability can simplify many repetitive modeling tasks, and also can be extended much
further. It is entirely possible to functionally link parameters between arbitrary nodes
- one can imagine a whole set of edits whose parameters are driven by a few simple
controls. A sensible interface for constructing linked parameter networks is one direction
for future research.

Another interesting possibility would be to incorporate CAD-style parametric model-
ing techniques into the surface editing domain. In solid modeling the types of parametric
constraints one wishes to preserve are often based on straightforward Euclidean infor-
mation - lengths, angles, volumes, and so on. To adapt parametric modeling to surface
Parts, first we must devise a vocabulary of constraints between Parts that can be used
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to express properties we might like to preserve. Geodesic distances, surface domains, and
Part volumes would likely be included in this vocabulary. The next task would be to
determine how to solve these constraint systems. Solid modeling constraint solvers may
be adaptable, but it seems likely that a more heuristic approach may be required, along
the lines of the iWires system [Gal et al. 2009].

Construction History One potential application of the Surface Tree is as a construc-
tion history for existing interactive modeling operations. If each operation in a modeling
session can be automatically captured as a Surface Tree node, then the full power of a pro-
cedural, hierarchical representation would be available if the artist wished to use it. It is
straightforward to see how some kinds of modeling operations, such as the displacement
painting found in sculpting tools, or relayering operations [Igarashi and Mitani 2010],
can be integrated into this framework. However, more complex deformations are usually
defined with respect to 3D handles which are arbitrarily oriented in 3D space (control
points, curves, and so on). For example, recent linear variational mesh editing techniques
such as Laplacian deformation [Botsch and Sorkine 2008] are specified by interactively
re-positioning a rigid portion of the surface. To capture such a deformation as a Surface
Tree Node, this handle and its global 3D position must somehow be represented relative
to the base surface, in such a way that when the base surface changes, the handle can be
re-computed in a way that the designer finds reasonably predictable.

Other Surface Types In this thesis I have focused on mesh surfaces. However, other
representations like NURBS, multiresolution SubDs, and and even point set surfaces are
in broad use. My procedural Parts can be adapted to each of these representations.
Point set surfaces are perhaps the easiest, as the key components of my approach - the
Discrete Exponential Map, the COILS deformer, and the procedural mesh data structure
- can be applied directly to point sets. A Surface Tree created using the mesh-based
interface could even be “played back” on a point set surface.

If we wished to integrate a NURBS or SubD Part into a NURBS or SuBD base
surface, then the main challenge is to determine how to implement the graph insertion
operations. Note, however, that in most modeling tools NURBS and SubD are sim-
ply high-level controls for designing meshes. Hence, from the point-of-view of most 3D
designers, NURBS and SubD are not surface representations but rather modeling inter-
faces. It is debatable whether these are good modeling interfaces, however because of
their ubiquity and even dominance in interactive modeling tools, every 3D artist knows
how to use them, to the point of being able to in most cases accurately predict how the
underlying surface will respond to manipulation of a particular control point.

Because of this familiarity, providing a NURBS or SubD-style interface to local shape
manipulation has significant practical benefits. This suggests an interesting possibility
- local NURBS and SuBD patches could be encapsulated as PartsṪhese Parts would
provide the familiar control-point interfaces, but integration into the base surface mesh
would be handled by the Surface Tree framework. One immediate advantage of this
approach over traditional NURBS and SubD models is that the artist would be freed
from having to explicitly manage global topology.
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Reverse Engineering A practical challenge which any new surface representation
faces is that of compatibility with previous representations. It seems clear that designers
will want to utilize Part-based modeling techniques with their existing databases of 3D
models. The main challenge here is that these existing models must be decomposed into
a meaningful semantic hierarchy of Parts. As I have shown, the meshmixer interface can
be used to manually carry out such a segmentation, although it is somewhat tedious. For
large databases of models some automated scheme would be necessary. However, existing
segmentation algorithms focus on splitting the model up into disjoint polygon groups,
rather than a layered decomposition. As I discussed in Section 7.3.4, there is reason to
believe that segmentation algorithms could be extended to infer Part overlaps. Even a
hybrid system based on user guidance would be useful in many application domains.

Physical Modeling Workflows A common workflow used in many shape modeling
tasks is to first work in physical media like clay, and then transfer the scanned model
to the computer. The resulting point cloud lacks any structure whatsoever, usually
necessitating time-consuming “re-topologizing” with NURBS or Subdivision surfaces.

An alternative would be to capture scans as the sculpting progresses. The differences
between these scans would define a Part decomposition of the final surface, and could
be represented by a Surface Tree. In addition to being a potentially useful interface for
constructing Surface Trees, the digital representation provides benefits for the physical
modeler. For example, it is much easier to enforce symmetry in the digital model. With
the rise of rapid prototyping, it is then possible to transfer virtual manipulations back
into the physical world, enabling an iterative physical/digital workflow.

Animation As noted above, parametric constraint techniques have seen little appli-
cation in surface modeling. This is an interesting area which may have many benefits,
particularly for animation. One general advantage of procedural representations is that
they can easily be animated, simply by manipulating parameters over time. Surface Trees
provide some interesting possibilities because the layered features can be independently
deformed, providing visual effects that would be difficult to generate otherwise.

One can even imagine applying simulation to animate Parts. For example, applying
gravity to constrained “cloth” Partscould be used to add sagging jowls or a furrowing
brow to a face. Dynamics-based procedural Parts could be a useful tool to quickly create
complex surface features that would be time-consuming or difficult to model. Another
interesting possibility would be to maintain dynamic Parts as active simulations. This
would allow animators to combine direct control of some facial features with dynamic
simulation of others. From an artistic standpoint, such a dynamics-with-control approach
may ultimately be more efficient and expressive than both manual and fully-automatic
techniques [Sifakis et al. 2006].

One issue with animating a Part-based surface model is that many animation tech-
niques depend on the ability to easily deform the model surface. Such deformations may
be challenging to integrate into the Part-based model, as I will now discuss.
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Deformation and In-Context Part Manipulation One challenge in integrating
Part-based modeling into existing modeling tools will be in determining how current
surface modeling techniques should be applied to decomposed models. Ideally one would
represent all model changes procedurally, so for example a global deformation applied
to a model would simply be another node in a Surface Tree. However, it may be more
practical to “bake” such operations into the existing set of Parts, particularly in certain
types of interfaces like sculpting tools.

This raises a tricky problem: the Part is always presented to the user in a deformed
state. The question then is how to apply standard modeling operations like deformation
to the Part geometry. There are two alternatives. One is to map the modeling operations
back into the original Part space. So, for example, in a Laplacian deformation this would
imply that the control handle manipulations must be transferred from the deformed to
un-deformed configurations. However the surface deformations I have considered (my
COILS deformer, the RIC deformation) do not support this inverse mapping. Even if a
spatial deformation were inferred, for example as in Sumner et al. [Sumner et al. 2007],
the result of this indirect manipulation may not be intuitive to the user. The other option
is to apply the deformation to the deformed Part geometry. This is likely to be preferable
to the artist, as the behavior will then be the same as traditional tools. However, we must
now somehow transfer the deformed configuration of the deformed Part back into the
un-deformed Part space. Again, without an invertible spatial deformation this problem
seems quite challenging to address.

This is a significant issue, although one must also consider whether it is necessary for
a Part-based tool to support in-context manipulation. In solid modeling tools, Parts
are largely manipulated in isolation, and then assembled. Taking the same approach to
surface Part editing does seem less natural, given that the surface Parts are meant to
smoothly integrate into a composite surface. However, one can observe that in many cases
where I have used complex Parts that may need to be edited, they are not extensively
deformed except near the boundary, and near the boundary there is generally a region
of low detail to ensure a smooth transition. In these cases it seems completely plausible
that one would edit the Part in isolation, and rely on indirect manipulations (blending
parameters, controls in the Part domain, etc) to refine the transition shape.

Cases where significant deformation is evident (and desirable) generally involve displacement-
like Parts, but changes in displacement vectors are much easier to transfer back to the
original Part configuration. This line of reasoning does lead us towards scenarios where
we have different classes of Parts depending on the type of feature being represented,
but perhaps this is unavoidable if we wish to support a wide range of different Part
manipulations.

Interaction Finally, working with the Surface Tree itself involves a number of interac-
tion and visualization problems which cannot easily be solved with existing techniques.
I have mentioned Visual Scaffolding [Schmidt et al. 2007], which exposes some of the
internal structure of a hierarchical 3D model, although the semantics of the visualization
are still limited to a flat list of parts. Integrating a representation of the model hierarchy
into visual scaffolding would be highly useful, particularly if it also allows the tree to be
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edited. Though it does not expose the global structure, one idea is to manipulate the
visual representation of selected items to convey the local structure of the model tree.
This may sidestep the visual complexity associated with displaying the full model tree,
although at the cost of global comprehension. One highly desirable property of any tree
visualization technique will be to support drag-and-drop of tree nodes between parents.
Again, to be applicable to layered surfaces, this must be done directly on the 3D surface.
Note that visual scaffolding has yet to be applied to layered surface representations - the
simple volumetric techniques currently proposed [Schmidt et al. 2007] may need to be
adapted to represent more complex surface Parts.

Part-based representation and manipulation of surface models has many advantages
over the current state-of-the-art. However, at a more basic level, perhaps the largest
benefit of Part-based interaction is its capability to make 3D surface modeling more
accessible. Even the most intuitive sketch-based interfaces can provide little guidance in
mastering the skills necessary to express an idea as a detailed and realistic 3D model.
3D sculpting tools still have relatively difficult interfaces, and there is a steep learning
curve which must be traversed if one is to become capable of creating even moderately
complex surface models. I believe that this is one of the most significant hindrances to
wider artist adoption of 3D design. This barrier may perhaps be lowered if the novice
is able to rely on libraries of parts to add the details they are not yet able to create
themselves. I personally have experienced this effect myself, while creating many of the
figures in this thesis. It is this “making hard things easy” aspect of Part-based surface
modeling that I find the most compelling. My hope is that this thesis provides others
with the the initial tools necessary to perform further exploration of the broad range of
possibilities for Part-based surface modeling.
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