
EUROGRAPHICS 2013 / I. Navazo, P. Poulin
(Guest Editors)

Volume 32 (2013), Number 2

Stroke Parameterization

R. Schmidt

Autodesk Research
Toronto, Canada

Figure 1: Our technique parameterizes the geodesic neighbourhood around a curve embedded in a 3D surface, such that the
parameterization is aligned with the stroke. This simplifies application of tiled and procedural stroke texture (left). We also
handle self-intersecting strokes (right).

Abstract
We present a novel algorithm for generating a planar parameterization of the region surrounding a curve em-
bedded in a 3D surface, which we call a stroke parameterization. The technique, which extends the well-known
Discrete Exponential Map [SGW06], uses the same basic geometric transformations and hence is both efficient
and easy-to-implement. We also handle self-intersecting curves, for which a 1-1 map between the original surface
and the plane is not possible. Stroke parameterizations provide an ideal coordinate space for solving a variety of
computer graphics problems. We present applications including tiling texture and displacement along 3D brush
strokes, procedural texturing along 3D paths, and user-guided crease extraction.

1. Introduction

Parameterization is a fundamental tool in computer graph-
ics, and in the case of 3D surfaces, a wide range of pa-
rameterizations techniques have been developed to map 3D
surfaces to useful spaces. Many works have considered the
problem of embedding a disc-shaped region of a surface
in the plane [FH05, SPR06], while more recently there has
been interest in application-specific parameterizations such
as the integral-coordinate embeddings used in quadrangu-
lation [BZK09] and decal parameterizations used for local
texture mapping [LHN05, SGW06, SGW09, CK11, MR12].

In this work we consider another type of local param-
eterization problem, namely how to parameterize the re-
gion around a curve embedded in a 3D surface. This prob-
lem arises in applying procedural textures along 3D brush
strokes, and hence we refer to the solution as a stroke param-

eterization. As with decal parameterizations, stroke parame-
terizations are also useful in geometry processing contexts.

There are several desirable properties we would like a
stroke parameterization to have (see Figure 2):

1. the parameterization should “follow the stroke”, so that
in parameter-space the stroke curve lies along the X axis

2. distortion should be minimized along the stroke curve
3. the mapping should be bounded, so that the distance to

the X axis is less than the stroke width

Taken in combination, these properties (particularly Prop-
erty 3) greatly simplify use of such stroke parameterizations
in applications, as one can assume that the mapping lies
within a predetermined bounding box. Existing parameter-
ization algorithms are not designed to simultaneously con-
trol all these properties. In particular, a stroke parameter-
ization should have areas of concentrated distortion in re-

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

R. Schmidt / Stroke Parameterization

gions where the stroke turns sharply. This runs counter to
the premise of most existing techniques, which try to glob-
ally minimize distortion by spreading it evenly. In many ap-
plication domains we also require fast computation on high-
resolution meshes, making simple geometric algorithms de-
sirable. Finally it can be the case that a curve embedded in a
surface self-intersects. In these cases we must create a map-
ping that is not strictly 1-1.

In the following sections we will describe a geometric al-
gorithm to compute stroke parameterizations. We first re-
formulate the Discrete Exponential Map [SGW06], adding
a frame-propagation step that increases the accuracy of the
exp/log map approximation. This new technique is then ex-
tended to propagate a parameterization from a curve, creat-
ing our stroke parameterization. We address self-intersecting
stroke curves, and show how stroke parameterizations are
useful in a variety of applications.

1.1. Related Work

Parameterizing the region around a 2D stroke for the pur-
poses of applying procedural or stylized texture is a stan-
dard problem in NPR, and has been considered in many
works [HL94]. Although explicit offset curves can be com-
puted, more often one defines “rib vectors” at points along
the stroke and creates a “thick polyline” [LM00]. This pro-
cess can be applied in 3D, however for strokes on a surface
the thick poly-path may intersect the surface.

Planar parameterization of arbitrary open surfaces has
been studied extensively, and we refer the reader to recent
surveys [FH05, SPR06] for a thorough treatment. Here we
focus on parameterization techniques designed to flatten a
local region in the neighbourhood of a point or curve.

Pedersen [Ped95] provides an early example, where the
user specifies four geodesic boundary curves and the in-
terior region is parameterized by cross-geodesics. The re-
sulting “decals” were used to interactively texture surfaces.
Lefebvre et al [LHN05] perform a similar task with local
planar projections, while Schmidt [SGW06] created decal
parameterizations using an approximation to the exponen-
tial map of differential geometry. This Discrete Exponen-
tial Map (DEM) has been applied in various domains such
as procedural texturing [CG07, MCL∗09], geometric mod-
eling [TSS∗], and geometry processing [WW11], and will
form the basis for our approach.

The DEM does have limitations. For one, it can distort
dramatically in high-curvature regions. Attempts have been
made to address this via mass-spring relaxation [SGW09]
and more robust geodesic computation [CK11]. The latter
method also addresses the other major failing of the DEM,
namely geodesic inaccuracy. Alternatives such as comput-
ing the gradient of the geodesic distance field [Bru08] or
Discrete Geodesic Polar Coordinates [MR12] also produce
much more accurate normal coordinates.

Figure 2: Traditionally surface strokes have been tex-
tured by (a) combining separate stamps with individually-
computed parameterizations. Our goal is to map (b) the re-
gion within some geodesic distance to the stroke to (c) a
planar parameterization where the stroke lies along the unit
axis. This mapping is not uniquely defined at points q which
are equi-distant to multiple points on the stroke.

None of these existing approaches address the problem
of parameterizing the region surrounding a curve on a sur-
face. Biermann et al’s [BMBZ02] spine parameterization
does map the region around a central curve to the plane, but
this is accomplished using the Angle-Based Flattening con-
formal parameterization [SdS01], which does not actually
take the curve into account.

2. Background

Our development of stroke parameterization is motivated by
the problem of applying procedural maps (texture, displace-
ment, etc) along a 2D path or stroke [HH90] lying on a 3D
surface. For example, in 3D painting and sculpting tools the
artist can select a stamp (a 2D image) and then apply that
stamp along the stroke. For many stamps a convolution of
the stamp with the stroke is the desired effect. In practice
this is approximated by applying the stamp separately, in
individually-computed 2D parameterizations, at regular in-
crements along the stroke (Figure 2a).

Consider, however, a case where the stamp pattern could
be tiled, as in Figure 1. Placing each stamp individually will
not result in a correct tiling because the per-stamp local pa-
rameterizations not be continuous in where they overlap. To
properly tile the stamp, we need a single consistent parame-
terization that follows the stroke (Figure 2b,c).

In the continuous domain a surface stroke is defined by
(1) a curve C(t) embedded in a 3D surface, parameterized by
arc-length, and (2) a geodesic distance r. Points x such that
geodesic distance dg(x,C)< r can then be parameterized as

P(x) = (tx , s(tx)dg(x,C(tx))) (1)

where C(tx) is the geodesically-closest point on C to x (Fig-
ure 3a), which we will denote Cx. We also require a sign s(tx)
on the geodesic distance which indicates which “side” of C
that x lies on, see below.

Note that for a given curved stroke, at some geodesic off-
set there will be points for which Cx cannot be uniquely de-

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

R. Schmidt / Stroke Parameterization

fined (Figure 2b). As a result, Equation 1 can only define
a bijective mapping within some fixed geodesic offset from
the stroke. This bijective region may not extend as far as our
desired stroke width r, leaving our problem mathematically
ill-posed (although our final algorithm will still do a reason-
able job in such cases).

In practice, we are concerned with discretely-sampled do-
mains where the surface is either a polygonal mesh or a
point sampling with neighbourhood connectivity. In the case
of a mesh, our parameterization algorithm operates only on
the mesh vertices and mesh edge graph, although some of
our applications involve a triangulation. The stroke is simi-
larly a piecewise-linear curve defined by the points S = {pi}
(Figure 3b). We assume that an orthonormal Frame Fp =
(e1,e2,np) is available at each point, where np (or n(p)) is
the surface normal, defined by one of the many options avail-
able for discretized surfaces. For the points along the stroke,
the frames are (approximate) Darboux frames, i.e. aligned
such that e1 points along the tangent direction S′ of S (esti-
mated via finite differencing).

With these definitions we can define the sign computation
mentioned above. Given the vector v in the tangent plane at
Sx that points in the direction of the geodesic between Sx and
x, and tangent vector S′x at Sx, s(tx) = sign(v · (S′x×n(Sx))).

Although various techniques are available to approximate
the geodesic distance from S [CK11,CWW12], back-tracing
through this distance field for each surface point x we wish
to parameterize is prohibitively expensive [MR12]. Instead
we propose a single-pass forward propagation to directly es-
timate the map P(x) = (tx,dx) (to simplify exposition we
will now use dx as a shorthand for s(tx)dg(x,S(tx))).

Figure 3: The (a) continuous and (b) discretized versions
of our stroke parameterization problem. See text for symbol
definitions.

2.1. Discrete Exponential Map

The Discrete Exponential Map (DEM) presented by Schmidt
et al [SGW06] incrementally maps the region around a point
p on a point-sampled surface to the tangent space Tp. As-
suming some point q is already embedded in Tp, we can lift
q’s neighbour x into Tp by first estimating Tq(x) via projec-
tion of x onto the tangent plane at q followed by re-scaling

to preserve the distance ‖q−p‖. We then transfer this vector
to Tp via the 3D rotation aligning Fq to Fp, which reduces to
a 2D rotation R(q,p) in the tangent space. Ultimately, then,
Tp(x) = Tp(q)+R(q,p)Tq(x).

The DEM utilizes a forward-propagation approach, where
starting with p, neighbours are incrementally lifted into Tp
using the tangent-space vector summation described above.
Applying Dijkstra’s algorithm to the neighbour graph pro-
duces piecewise-linear shortest paths from p to its local
neighbourhood, resulting in a suitable ordering of points.

Schmidt [Sch10] describes an improvement to the DEM
called upwind averaging. In the description above, only one
point q is used to determine Tp(x), with q chosen based
on the somewhat arbitrary ordering induced by the Dijkstra
graph-distance. If x has another neighbour r for which Tp(r)
is already known, we can estimate Tp(x) using both neigh-
bours and average the result. A weighted averaging of pre-
dictions from all nearby known (or “upwind”) neighbours
significantly improves the robustness of the DEM.

Before we continue, a brief note about terminol-
ogy. Although initially referred to as an “exponential”
map [SGW06], the continuous process being approximated
by the DEM is in fact the log map [Bru08], the inverse of
the exponential map. However, the resulting pointwise corre-
spondence between vertices and normal coordinates defines
both exp and log at each input vertex.

3. Frame-Propagation DEM

In the DEM, each frame Fq is aligned with the fixed frame
at Fp via a pair of rotations, to directly map vectors from Tq
into Tp (Figure 4a). In this section we will reformulate the
DEM to avoid this link between distant points, by propagat-
ing frames outward from p along with normal coordinates.

Assume we have a point q which is a neighbour of p, and
a third point x which is a neighbour of q but not p. Tp(q)
is computed directly via projection, as is Tq(x). In the DEM
we would transform this vector to Fp via frame alignment,
but another option would be to slide Tq(x) along the (linear)
curve between q and p via parallel transport (Figure 4b).

If we embed Tq(x) in Fq, then parallel transport amounts
to transforming Fq to align the normal nq with np via the
minimal rotation around np× nq. The inverse rotation will
take Fp to Fq, and if we use this frame as the basis for Tq, we
can compute Tp(x) as the direct sum Tp(q)+Tq(x).

To generalize the above process, we can compute Tp(x) at
any point x with a known neighbour q by first shifting frame
Fp to q via parallel transport, producing Fp→q, and using
this frame as the basis for the vector sum in Tq (Figure 4b).
To transport an initial frame Fp along a path {qi} through
a point sampling, we need only compute the sequence of
minimal rotations that aligns n(qi−1) with n(qi) and apply

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

R. Schmidt / Stroke Parameterization

them to e1(p) - the final n is the surface normal at the last
point in the path, and e2 is defined by orthonormality.

On curved surface the effect of parallel transport on a vec-
tor depends on the type of connection in use. The approach
we have described approximates the Levi-Civita connection,
which accumulates an angle defect relative to the curvature
along the transport path [CDS10]. So, the result of our frame
propagation depends on the path taken from p to x.

Since the path is somewhat arbitrary, we can transport Fp
along multiple paths and average the result (Figure 4c). Note
that as each resulting frame has the same n, we need only
average e1. Rather than explicitly compute multiple paths,
we combine a propagation of frames with the propagation of
normal coordinates. Just as Tp(x) is determined for a point x
by averaging estimates from multiple upwind neighbours qi,
we also average the transported frames Fp→qi→x.

The above process simply adds one more step to the DEM
propagation. Note, however, that we have also discarded the
global connection between x and p - the computation is now
strictly local. As one might expect, the resulting normal co-
ordinates are not identical to those of the original DEM. We
find that they are in fact a more accurate approximation of
the log/exp map. For example, the tangent-space vector sums
used in the DEM assume a smooth connected neighbour-
hood, and significant deviations from analytic normal coor-
dinates occur when this is not the case. Brun [Bru08] noted a
serious problem with cones, which are developable except at
the apex. Figure 5 demonstrates that our frame-propagation
approach resolves this issue.

In Figure 6 we see the trade-off clearly - our approach
“wraps around” the horn, resulting in a tear in the param-
eterization as the growing geodesic front self-intersects. In
contrast, the DEM smoothly passes around the horn, but col-
lapses much of the horn into itself in parameter space.

p

q

x

(a)

p

q

x

(b)

p

q

x

(c)

q

x

p1 p2 p3
(d)

Figure 4: In the DEM [SGW06], frames are (a) mapped
from q directly to p. We instead (b) parallel-transport the
frame at p to q through intermediate points, and (c) average
over multiple paths to get a smoother result. This path av-
eraging extends (d) to multiple starting points, allowing our
parameterization to grow outwards from a sampled curve.

Figure 5: Normal coordinates computed on a cone using (a)
our frame propagation and (b) the original DEM.

Figure 6: Geodesic disc parameterized with normal coordi-
nates estimated by (a,c) our frame propagation and (b,d) the
original DEM.

4. Stroke Parameterization

In the previous section we described an approach to comput-
ing normal coordinates around a point p which propagates
frames in addition to planar coordinates. This process differs
significantly from the original DEM because the computa-
tions are all strictly local - to compute a planar coordinate
at x we need only the frames and planar coordinate values
at its direct neighbours. There is no knowledge of the initial
starting point p.

This local property allows the frame propagation process
to be adapted to multiple seed points. For our sampled stroke
S = {pi} we have associated frames Fpi . Clearly it should
be the case that P(pi) = (α(pi),0), where α(pi) is the arc
length along S. We then insert each pi into our point neigh-
bourhood graph, then initialize Dijkstra’s algorithm with the
distance at each pi set to 0. As the graph distance at a point
x is fixed, we update its planar coordinate as

P(x) = ∑
qi∈Nu(x)

w(qi,x)(P(qi)+Tqi(x)) (2)

where Nu(x) is the set of neighbours of x that are al-
ready fixed by the propagation (ie “upwind” points). We set
w(qi,x) to be the inverse-distance weight 1/(‖qi− x‖+ ε),

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

R. Schmidt / Stroke Parameterization

where ε is a small multiple of machine precision. Next we
compute the first tangent direction e1 at x as

e1(x) = ∑
qi∈Nu(x)

w(qi,x)R(qi,x)e1(qi) (3)

where R(qi,x) is the minimal rotation that takes nq to nx,
i.e. the rotation around vector nq×nx by angle acos(nq ·nx)
As the normal nx is fixed, we can find e2(x) via orthonor-
mality. The propagation is halted at x if ‖P(x)‖ > r, the
stroke width. We need not explicitly compute the sign of the
geodesic relative to the stroke, as the local normal coordi-
nates used in Equation 2 are signed.

Note that in Equation 3, each incoming e1 that we sum
over is itself computed via a weighted average, and this con-
tinues back to the initial frames Fpi . So, as in the single-point
case, we are averaging across many paths to x (Figure 4d).
In fact this averaging includes information from all stroke
points within a sort of geodesic event horizon, so the pro-
cess can be considered a sort of discretized integration.

Stroke parameterizations computed using our method are
shown throughout the paper. In addition to the parameteri-
zation, our approach propagates an orthogonal vector field
out from S, which can be useful in various applications. See
Figure 7 for an example.

Figure 7: An example of the vector field created by the prop-
agation of frames out from the stroke curve.

4.1. Handling Overlaps

So far we have assumed that each point q in the neighbour-
hood of S can be associated with a unique point on S, and
hence assigned a unique parameter value. This is not the case
if the stroke self-intersects, as in Figure 8a, and Figure 9a
shows the resulting failed parameterization. Conceptually,
in this case we wish to assign multiple parameter values at
some points. A straightforward way to do so is to create a
separate copy of our surface data in the overlapping regions,
as shown in Figure 8b.

Compared to 2D, determining where the geodesic neigh-
bourhood around a stroke will overlap is complex. We de-
scribe a solution for mesh surfaces, which can be applied to
point set surfaces with some additional complexity. Our ap-
proach is to slide a geodesic disc along S, and accumulate a
new mesh based on incremental appending of discs.

Figure 8: We cannot assign a unique stroke parameter t to
(a) points in the neighbourhood of a self-intersection. In-
stead we create a new surface which (b) overlaps at the self-
intersection, by (c) appending sequential geodesic discs.

Figure 9: Direct parameterization of (left) a self-
intersecting stroke results in catastrophic failure. We (right)
assign multiple parameter values to each vertex in the over-
lap region by generating copies with disconnected topology.

The procedure is illustrated in Figure 8c. We denote by Ti
the set of triangles contained within the geodesic disc cen-
tered at pi, and Vi the set of vertices contained in these tri-
angles. We use approximate geodesic discs, found via Dijk-
stra’s algorithm on the mesh edge graph. We initialize our
new mesh with copies of V0 and T0. Then for disc pi, we ap-
pend to the new mesh copies of the vertices vertices in Vi but
not in Vi−1, ie the set Vi \Vi−1. Then for each triangle in Ti
we append a copy, linked to the appropriate new vertices, if
it contains any vertex in Vi \Vi−1.

If we apply this process in sequence of pi, and embed each
pi as we go along, the result is a new overlapping mesh that
follows the stroke, with disconnected copies of the faces in
the overlap region. The stroke parameterization is then com-
puted on this new surface (Figure 9b).

Although we have parameterized a copy of the original
mesh, each vertex in the new mesh maps corresponds to one
of the original vertices, so we in effect have stored multiple
parameter values for each vertex. How these multiple pa-
rameter values should be used is application-specific - for
example, in texture painting the overlaps could be blended.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

R. Schmidt / Stroke Parameterization

5. Evaluation

In Section 1 we stated that our goal was to compute a pa-
rameter value (tx,dx) for each point x in the neighbourhood
of S, but we have not explicitly computed either of these
values. As we built upon an approach for computing nor-
mal coordinates around a point, there is some rationale for
believing that we have in fact approximate geodesic dis-
tances. However, there is a simple test we can perform: given
P(q) = (u,v), we can measure the error ||v|− dg(S(u),q)|.
Although this is only a necessary (i.e. not sufficient) condi-
tion for correctness, it is unlikely that our method could con-
sistently produce an incorrect curve parameter and matching
correct geodesic distance.

Figure 10 shows three test cases, where we have used the
DEM to estimate dg. The approximation is least accurate at
sharp bends in S, which is expected as in these regions the
parameterization should be stretched or compressed. Note
that where the checkerboard appears stretched, it is actually
most compressed in the parameterization. Hence, the most
visibly stretched regions have the lowest parameter-space
sampling density, and we expect higher error there. As in
the DEM, discontinuities in the geodesic distance field also
result in non-smooth behavior.

Figure 10: Geodesic distance approximation error. In per-
centages of stroke width r, for (a) µ = 0.3%, max = 1.6%,
(b) µ = 0.4%, max = 27.3%, (c) µ = 2.6%, max = 17%.

5.1. Comparison with Variational Parameterization

Most state-of-the-art planar parameterization techniques are
variational, in that they attempt to find a low-distortion map-
ping via constrained energy minimization. We experimented
with several such techniques, applied to the same geodesic
neighbourhood as in our stroke parameterization. To make
such techniques “follow” our input strokes, we added posi-
tional constraints.

Figure 11 shows a comparison between our method
and Discrete Natural Conformal Parameterization

Figure 11: Comparison of parameterizations computed us-
ing (a,c) our approach and (b,d) a conformal mapping.

(DNCP) [DMA02], which attempts to minimize angu-
lar distortion. Although the resulting parameterization does
follow the stroke and is smoother than our geometric result,
geodesic distances are not preserved. This is problematic
because as shown in 11b the effective “width” of a mapped
texture can vary unpredictably, while the result in 11d is
unbounded in parameter space.

Figure 12 shows a comparison with As-Rigid-As-Possible
mesh parameterization (ARAP) [LZX∗08]. We tried two
constraint techniques. In the first, existing vertices near
the stroke are fixed to appropriate (tx,dx) values (this
method was also used for DNCP). We also tried constraining
barycentric points on the triangle interiors to the parameter-
space stroke positions (α(pi),0). We saw little difference be-
tween these two approaches.

It is clear that the ARAP optimization tries to pull the pa-
rameterization away from the constraints to reduce global
distortion at the expense of local irregularities. Similarly
nothing constrains ARAP or DNCP to maintain orthogonal-
ity to the input stroke, so in general they do not. These re-
sults are not unexpected - it is well-known that variational
approaches suffer when point constraints attempt to intro-
duce regions of high distortion. However, this is the very
property which we expect a stroke parameterization to have.

Figure 12: Comparison of (a) our method with constrained
ARAP, where in (b) vertices near the stroke are constrained,
while in (c) barycentric points on face interiors are fixed.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

R. Schmidt / Stroke Parameterization

Finally, Figure 13 shows a comparison of ARAP and
DNCP computation times versus our method (FP = Frame
Propagation). We drew 30 example strokes on various
meshes, and then sorted by total number of triangles in the
parameterized region. It is clear from 13a that our method
is generally an order-of-magnitude faster than ARAP. Note
that for ARAP we only count the time to solve for a parame-
terization of the geodesic region, while the FP time includes
the cost of finding this region. In 13b we break down the var-
ious steps of ARAP, which iteratively improves an initial pa-
rameterization. Following [LZX∗08], we used DNCP, which
itself is significantly more costly than the entire FP tech-
nique. Note also that the DNCP and ARAP solve steps em-
ploy highly-tuned state-of-the-art linear solvers, while our
research code has seen only minimal optimization.

FP FP

ARAP Iter

DNCP Solve

Faces

Ti
m

e
(s

)

Ti
m

e
(s

)

Faces

Total Compute Time, ARAP vs FP (log/linear) Time per ARAP Component, vs FP (log/log)

Figure 13: Comparison (left) of computation times for our
method (FP) and ARAP, and (right) breakdown of the vari-
ous steps in ARAP computation. See text for details.

5.2. Limitations

As with the DEM, there are limits to parameterization via
discrete front propagation. Our approach is most effective
when used locally, with relatively small stroke widths. If the
desired stroke neighbourhood covers areas with large varia-
tions in surface curvature, the parameterization can degener-
ate. Similarly, very sharp bends relative to the stroke width
lead to high distortion, see Figure 14 for a particularly diffi-
cult test case.

6. Applications

As described in Section 1, our initial motivation for stroke
parameterization was to support tileable stamp textures
along a user-drawn stroke. With the machinery we have de-
veloped in the previous sections this is completely straight-
forward, Figure 1 shows one such example.

Given its regular structure, our stroke parameter space is
ideal for procedural texturing and stylization. For example,
we can create surface vector graphics [SGW06] (Figure 15).
An arrow along the stroke can be generated using a pixel
shader which tests against the union of a circle, rectangle,
and triangle laid out along the x axis. Similarly, long text
strings can be added to the surface simply by rasterizing

Figure 14: A challenging test case, in which the stroke width
is larger than the turning radius of the stroke. In such cases
our method (a,b) compresses the parameterization at regions
that correspond to geodesic discontinuities. These areas are
quite noisy, as are areas of extreme stretching. In contrast,
constrained ARAP (c,d) can smooth out the parameteriza-
tion, but at the cost of undesirable changes in the shape of
the mapped arrow.

in 2D along the x axis. This simplifies the one-DEM-per-
character approach taken in previous works [CG07].

Figure 16 shows a procedural displacement map gener-
ated along a stroke, as would be done in a 3D sculpting tool.
Even on this high resolution (3m triangles) mesh, our stroke
parameterization is fast enough to provide immediate feed-
back (see video). Stroke parameterization could also be used
in systems like GeoBrush [TSS∗], where the radial DEM
parameterization is not suitable for elongated features. As in
that system, geometry can be processed in parameter space,
for example to refine the mesh so it can better approximate
a procedural displacement.

6.1. Crease Extraction

Local parameterizations can be useful spaces for geometry
processing, as shown in previous works [WW11,MR12]. We
explore snapping a stroke to surface feature curve. This has
been considered in many previous contexts [FKS∗04], but
existing methods tend to be specific to the type of feature
being detected, and hardening the algorithms against issues
like noise or weak features can be very complex. Using a
stroke parameterization, we can sample an arbitrary function

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

R. Schmidt / Stroke Parameterization

Figure 15: Examples of vector-graphic style elements on surfaces - (a) dashed line, (b) patterned line, (c) patterned fill, and
(d) text aligned with along a surface path.

over the parameter space and create a 2D image, then apply
standard feature detection methods from image processing,
and map the results back to the 3D surface.

Figure 16: Procedural displacement of a high-resolution
(3m triangles) mesh along a stroke.

Figure 17 shows several examples, where we sample
mean surface curvature in the stroke parameterization. A
simple snakes-style algorithm [STG98] is then used to fit a
smoothed polyline to the ridge of locally-maximal values in
the image. After mapping back to 3D the curves provide ex-
cellent approximations of the high-curvature features. As the
initial parameterization is distorted, we can iterate this pro-
cess to further refine the 3D curve, although we have yet to
see significant improvement after the second iteration. This
approach is effective even in the presence of very weak fea-
tures, such as in Figure 17b.

Figure 18 shows another example where the function we
sample is the dot product of the surface normal and the view-
ing vector, resulting in occluding contours from the current
viewpoint. Note that the basic strategy we have implemented
is sensitive to initialization, however far more robust snake
techniques exist and are trivially applicable.

7. Discussion

We have presented a novel technique for parameterizing the
geodesic neighbourhood around a curve on a surface, which

we call a stroke parameterization. The frame-propagation
that is the basis for our technique also improves accuracy
in the well-known Discrete Exponential Map [SGW06]. We
showed that our approach produces reasonable geodesic dis-
tance approximations, compares well to conformal parame-
terization under high distortion, and can be extended to han-
dle self-intersecting stroke curves.

One interesting issue which we have yet to address is sur-
face curves that form closed loops. In this case it would be
useful to be able to compute a mapping onto a cylinder rather
than a plane. This seems relatively tractable if we can re-
place the internal mathematics with operations that operate
in a modulo space.

Another improvement would be better handling of sharp
turns. Currently the resulting geodesic discontinuity creates
a highly compressed region of parameter space. It may be
better to create overlap regions here, however our technique
is not yet able to do this, as the set of “live” triangles does
not significantly differ as we go around the bend.

Finally, in some cases we may be willing to trade
geodesic accuracy for smoother parameterization. Recent
methods for efficiently computing smoothed geodesic dis-
tances [CWW12] could be applied here. Smoother parame-
terizations would be particularly useful for contour extrac-
tion. Another interesting possibility is to use our stroke pa-
rameterizations to track contours that move over time. The
extended parameterization space could greatly simplify this
sort of tracking, which may be particularly useful in impos-
ing frame coherence on NPR renderings.

References
[BMBZ02] BIERMANN H., MARTIN I., BERNARDINI F., ZORIN

D.: Cut-and-paste editing of multiresolution surfaces. ACM
Trans. Graph. 21, 3 (2002), 312–321. 2

[Bru08] BRUN A.: Manifolds in Image Science and Visualization.
PhD thesis, Linkoping University, 2008. 2, 3, 4

[BZK09] BOMMES D., ZIMMER H., KOBBELT L.: Mixed-
integer quadrangulation. ACM Trans. Graph. 28, 3 (2009). 1

[CDS10] CRANE K., DESBRUN M., SCHRÖDER P.: Trivial con-
nections on discrete surfaces. Comp. Graph. Forum 29, 5 (2010).
4

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

R. Schmidt / Stroke Parameterization

Figure 17: Hand-drawn strokes (black) are aligned (red) to
nearby curvature ridges. Parameter-space curvature image
maps from first and second iteration of one curve in (a) are
shown in top left. In (b), the stroke is aligned along a very
faint curvature minima.

Figure 18: Hand-drawn strokes (black) are snapped (red) to
nearby silhouette contours.

[CG07] CIPRIANO G., GLEICHER M.: Molecular surface ab-
straction. IEEE Trans. Vis. and Comp. Graph. 13 (2007), 1608–
1615. 2, 7

[CK11] CAMPEN M., KOBBELT L.: Walking on broken mesh:
Defect-tolerant geodesic distances and parameterizations. Comp.
Graph. Forum 30, 2 (2011), 623–632. 1, 2, 3

[CWW12] CRANE K., WEISCHEDEL C., WARDETZKY M.:
Geodesics in heat. CoRR abs/1204.6216 (2012). 3, 8

[DMA02] DESBRUN M., MEYER M., ALLIEZ P.: Intrinsic pa-
rameterizations of surface meshes. In Proc. Eurographics (2002).
6

[FH05] FLOATER M., HORMANN K.: Surface parameterization:
a tutorial and survey. In Advances in multiresolution for geomet-
ric modelling. Springer Verlag, 2005, pp. 157–186. 1, 2

[FKS∗04] FUNKHOUSER T., KAZHDAN M., SHILANE P., MIN
P., KIEFER W., TAL A., RUSINKIEWICZ S., DOBKIN D.: Mod-
eling by example. ACM Trans. Graph. (Proc. SIGGRAPH)
(2004). 7

[HH90] HANRAHAN P., HAEBERLI P.: Direct wysiwyg painting
and texturing on 3d shapes. SIGGRAPH Comp. Graph. 24, 4
(1990), 215–223. 2

[HL94] HSU S. C., LEE I. H. H.: Drawing and animation using
skeletal strokes. In Proc. SIGGRAPH ’94 (1994). 2

[LHN05] LEFEBVRE S., HORNUS S., NEYRET F.: Texture

sprites: Texture elements splatted on surfaces. In Proc. I3D ’05
(2005). 1, 2

[LM00] L. J. N., MARKOSIAN: Artistic silhouettes: a hybrid ap-
proach. In Proc. NPAR ’00 (2000), pp. 31–37. 2

[LZX∗08] LIU L., ZHANG L., XU Y., GOTSMAN C., GORTLER
S.: A local/global approach to mesh parameterization. In Proc.
SGP ’08 (2008), pp. 1495–1504. 6

[MCL∗09] MITRA N., CHU H.-K., LEE T.-Y., WOLF L.,
YESHURUN H., COHEN-OR D.: Emerging images. ACM Trans.
Graph. 28, 5 (2009). 2

[MR12] MELVÆR E. L., REIMERS M.: Geodesic polar coordi-
nates on polygonal meshes. Comp. Graph. Forum 31, 8 (2012).
1, 2, 3, 7

[Ped95] PEDERSEN H. K.: Decorating implicit surfaces. In Pro-
ceedings of SIGGRAPH 95 (1995), pp. 291–300. 2

[Sch10] SCHMIDT R.: Part-Based Representation and Editing of
3D Surface Models. PhD thesis, University of Toronto, 2010. 3

[SdS01] SHEFFER A., DE STURLER E.: Parameterization of
faceted surfaces for meshing using angle based flattening. En-
gineering with Computers 17, 3 (2001), 326–337. 2

[SGW06] SCHMIDT R., GRIMM C., WYVILL B.: Interactive de-
cal compositing with discrete exponential maps. ACM Transac-
tions on Graphics 25, 3 (2006), 605–613. 1, 2, 3, 4, 7, 8

[SGW09] SCHNEIDER J., GEORGII J., WESTERMANN R.: In-
teractive geometry decals. In Proc. VMV 2009 (2009). 1, 2

[SPR06] SHEFFER A., PRAUN E., ROSE K.: Mesh parameter-
ization methods and their applications. Found. Trends. Comp.
Graph. Vis. 2, 2 (2006), 105–171. 1, 2

[STG98] SINGH A., TERZOPOULOS D., GOLDGOF D.: De-
formable Models in Medical Image Analysis. IEEE Computer
Society Press, 1998. 8

[TSS∗] TAKAYAMA K., SCHMIDT R., SINGH K., IGARASHI T.,
BOUBEKEUR T., SORKINE O.:. Comp. Graph. Forum, 2. 2, 7

[WW11] WEI L.-Y., WANG R.: Differential domain analysis for
non-uniform sampling. ACM Trans. Graph. 30, 4 (2011). 2, 7

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

