
Online Submission ID: papers 0295

Surface Trees: Interactive Hierarchical Surface Modeling (papers 0295)

Figure 1: Surface trees are procedural 3D models composed of hierarchical layered surface deformations. The examples shown here were
created in our interactive surface tree editor, each taking less than 30 minutes. Surface trees support smooth deformation, sharp extrusion,
and fast hole and handle topology-changing tools. The surface tree is a full construction history - any previous operation can be interactively
manipulated, overlapping deformations are automatically recomputed.

Abstract

A method is described for representing and manipulating a hierar-
chy of surface editing operations, in the context of an interactive
shape modeling tool. Surface deformations are cast as dynamic
geometric textures, applied to locally-parameterized regions of the
surface which can be interactively manipulated, and also layered.
This use of dynamically layered deformation is characterized as
“surface compositing”, and leads to the definition of the surface
tree - a hierarchical, procedural representation of a 3D surface. Like
CSG trees, surface trees allow any deformation to be manipulated at
any time. Editing operations higher in the model tree are automati-
cally recomputed, with relative position of layered elements main-
tained by “anchoring” them in the parameter space of lower layers.
In addition to surface deformation, dynamic holes and handles can
be created between (possibly non-manifold) surfaces. These tech-
niques are demonstrated in an interactive “drag-and-drop” mesh
editing system. To efficiently implement this system, a novel pro-
cedural mesh data structure is described.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Curve, surface, solid, and ob-
ject representations I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques

Keywords: surface modeling, procedural modeling, decal para-
meterization

1 Introduction

Research in geometric modeling continues to battle with the chal-
lenging question: “How quickly and effectively can a designer
transform a mental concept into a digital object, that is easy to refine
and reuse?”. While a large body of existing work addresses the effi-
cient construction geometric models [Igarashi et al. 1999; Schmidt
et al. 2005; Zwicker et al. 2002], less attention has been given to
model refinement and reuse. Concepts of construction history, lay-
ering and parametric or procedural editing make refinement and
reuse simple. While these paradigms are commonplace for edit-
ing naturally parameterized signals such as animation curves [Au-
todesk Inc. 2007] or images[Adobe Systems Inc. 2007], they have
had limited success with general 3D surface representations. We
address this problem by developing a framework for procedural

surface modeling based on locally layered 2D parameterizations,
which are used to generate 3D surface geometry.

The concept of three-dimensional geometry modification generated
based on 2D parameterizations can be traced back to displacement
mapping [Cook 1984], which is widely recognized as an efficient
method of increasing geometric surface detail. Recent extensions
such as geometric texture [Elber 2005] and shell mapping [Po-
rumbescu et al. 2005] allow surfaces to be tiled with arbitrary geo-
metric detail, greatly enhancing visual complexity.

Similar to traditional texture mapping, geometric texturing has been
cast as a stage in the rendering pipeline. A geometric texture is a
surface attribute, with the necessary geometry being generated on-
the-fly during rendering [Elber 2005]. However, geometric texture
can also be considered a modeling operation. Recent developments
in surface parameterization have produced the discrete exponential
map [Schmidt et al. 2006], an efficient algorithm for parameterizing
small regions of the surface. These decal parameterizations can be
used to apply geometric texture locally, resulting in a “drag-and-
drop”-style surface deformation interface.

One issue that immediately occurs in this interface is that decal pa-
rameterizations may overlap. Since geometric textures contain ar-
bitrary geometry, any sort of automatic merging is problematic. An-
other solution is to impose a layer ordering on the decals. Hence,
decals with a higher layer order are applied on top of previous geo-
metric texture. This layer ordering introduces a significant concep-
tual difference - geometric texture is no longer simply a means for
adding surface detail. Instead, it has become a more fundamental
modeling operation.

Traditionally, surface modeling interfaces have been destructive in
nature. Overlapping deformations or other manipulations are ap-

Figure 2: A surface tree is a procedural definition of a complex
surface, created by compositing a series of editing operations. Any
of the individual operations in the tree can be modified at any time.

1

Administrator
Text Box
Ryan Schmidt and Karan Singh, University of Toronto

Administrator
Text Box
This is an early revision of "Sketch-Based Procedural Surface Modeling and Compositing" published at Eurographics 2008. Please use that citation in future works.



Online Submission ID: papers 0295

plied sequentially, and previous changes to the surface cannot be
directly modified once another change is made. However, If the
surface underlying a decal-based geometric texture is modified, the
decal can simply be re-computed on the new surface, and the geo-
metric texture re-applied. In this way, layered geometric texture
decals can be incrementally updated. Building on this idea, com-
plex geometric models can be constructed out of layered geometric
textures, each of which can be modified at any time. The resulting
model is essentially a procedural surface model.

The contribution of this work is a procedural approach to surface
modeling, described in the context of an interactive mesh editing
tool. Since there is no inherent reason that geometric textures be
static, surface editing tools will be re-cast as dynamic geometric
texture elements which can be interactively modified (Section 4).
Instead of a static 3D mesh, the current model will be represented
by a surface tree - a hierarchy of layered, local geometric textures
applied to an initial surface (Section 3). This novel procedural sur-
face model supports interactive manipulation of any editing opera-
tion in the entire modeling history. To preserve hierarchical seman-
tics, surface tree nodes are defined relative to surface parameteriza-
tions, and positioned relative to previous tree nodes. Hence, when
underlying surface nodes are modified, more recent operations are
updated automatically. Supporting efficient non-linear editing also
requires replacing the traditional mesh data structure with a proce-
dural variant (Section 5). The non-destructive layering of surface
manipulations is reminiscent of layer-based image compositing in-
terfaces, such as Adobe Illustrator [2007], leading us to characterize
our approach as surface compositing.

2 Background

The notion of increasing the geometric detail of a parameterized
surface by displacing it based on some parameter-space signal, or
displacement mapping, was first introduced by Cook [1984]. Ex-
tensive literature on rendering displacement maps exists, but is out-
side the scope of our work.

Displacement mapping has recently been generalized to allow for
the direct insertion of new geometry [Peng et al. 2004; Elber 2005;
Porumbescu et al. 2005; Zhou et al. 2006]. The goal of these meth-
ods is to tile complex 3D geometric elements on the target surface.
The standard approach is to define the desired element in a canon-
ical 3D volume, and map this canonical volume to local patches of
the surface, where the deformed 3D volume is usually defined by
normal displacement. These techniques are generally applied au-
tomatically, in the rendering pipeline. Use as a modeling primitive
has been limited to simple displacement-painting tools common in
software such as Zbrush [2007].

Volumetric spatial deformation techniques [Barr 1984; Sederberg
and Parry 1986; Singh and Fiume 1998; von Funck et al. 2006]
are frequently applied in shape deformation. At a conceptual level,
these methods “warp” some volume containing the 3D model, and
hence exist independently both of the surface being modified, and
of other warps. This simplifies their use in procedural frameworks,
but often limits the control available to the artist. In response,
surface deformation techniques have been developed which are
defined relative to the original surface [Welch and Witkin 1992;
Sorkine et al. 2004; Yu et al. 2004; Botsch et al. 2006]. However,
by introducing dependence on the un-deformed surface, the ability
to procedurally compose deformations is lost (Figure 3). It is this
specific issue which our work aims to address.

Multi-resolution techniques can also be used to apply surface de-
formation [Zorin et al. 1997], and are (in some sense) proce-

dural surfaces. Intuitive interaction operations such as cut-and-
paste [Biermann et al. 2002] have been demonstrated on multi-
resolution surfaces, as well as level sets [Museth et al. 2002] and
point sets [Zwicker et al. 2002]. However, regardless of surface rep-
resentation, these techniques are still destructive - non-sequential
manipulation of overlapping pasted elements is not supported.

While the procedural modeling paradigm has been applied heavily
in automatic generative modeling [Ebert et al. 2002; Prusinkiewicz
and Lindenmayer 1991], there have been relatively few attempts to
leverage it in surface editing interfaces. Real-time CSG [Hable and
Rossignac 2005] has been demonstrated, and the ShapeShop sys-
tem [Schmidt et al. 2005] supports non-linear editing of hierachi-
cal implicit models, but these are volumetric shape representations.
Procedural mesh editing is described by [Lewis and Jones 2004],
but again the underlying algorithms are volumetric in nature. None
of these frameworks support procedural surface deformation. Com-
mercial modeling systems such as Autodesk Maya [2007] do sup-
port a limited form of procedural surface modeling in the form of
construction history, but this interface is limited to certain NURBS
surface-construction tools such as sweeps and surfaces of revolu-
tion.

Figure 3: An initial surface is first modified by surface deformation
A, followed by deformation B. While B is specified relative to A,
the relative context (vectors, control points, and so on) are exist in
global 3D position. If A is modified, this contextual information
becomes meaningless, and it is unclear how B should be re-applied
to A. This is the surface transport problem.

3 Procedural Surface Editing

The main challenge in creating a procedural definition of a surface
suitable for interactive editing is illustrated in Figure 3. A local
deformation A is applied to some base surface, followed by defor-
mation B which affects the region of the surface modified by A.
As is standard in 3D modeling interfaces, each of these deforma-
tions is specified by contextual information (control points, han-
dles, etc) which have meaning relative to the underlying surface,
but are stored in global (3D) position. Assuming that this informa-
tion is stored for both A and B, the artist may then wish to change
A without destroying B. However, since B is defined relative to A,
modifying A implicitly modifies B, and the contextual information
which defines B must somehow be updated. Essentially, the defin-
itions of A and B are are not independent, which is problematic as
it leaves the notion of procedural surface manipulation somewhat
ill-posed.

To support interactive editing of A while preserving B, two issues
must be addressed. First, we devise a method for representing over-
lapping surface deformations, and second, a mechanism for updat-
ing the set of deformations when one of them changes.

2



Online Submission ID: papers 0295

3.1 Surface Trees

In traditional modeling tools, a mesh is represented as tuple
{V,E ,F} of sets of vertices, edges, and faces. Sequential edit-
ing operations destructively update this set. As we have noted, it is
generally not possible to manipulate previous edits because the “se-
mantics” of each operation are dependent on the previous state of
the mesh. If the previous state is modified in any way, the semantics
of later edits are lost.

To mitigate this problem, we eliminate the dependency between
an editing operation and the surface it is applied to. Instead, the
semantics of an edit are defined in a canonical space, and dy-
namically transferred to the current surface based on a local uv-
parameterization. Although it is somewhat of a simplification, each
edit can be thought of as an interactive geometric texture, which
can be dynamically applied to any parameterized surface.

By defining surface edits relative to a canonical space, rather than
to the surface they are currently applied to, the dependency between
operations is severed. Each surface edit is now an independent en-
tity, which can be transferred to any other surface simply by re-
parameterizing that new surface. Recent work in surface parame-
terization [Schmidt et al. 2006] described a fast and stable technique
for locally parameterizing point-sampled surfaces. These local sur-
face parameterizations, called decals, were applied to interactive
procedural surface texture compositing. The general approach is
to segment a geodesic disc which tightly contains the necessary
“support region” of the surface, and then parameterize it, creating a
local uv-domain on the surface. In [Schmidt et al. 2006], the Dis-
crete Exponential Map algorithm efficiently computed both these
steps simultaneously. We use that algorithm here, but note that any
alternate schemes for geodesic disc segmentation and surface para-
meterization could be used instead.

We now have a series of surface edits, each defined with respect to
their local decal parameterization. However, decals can overlap -
this is problematic, as edits may be arbitrarily complex and hence
difficult to automatically combine. Instead we impose a layer or-
dering on the edits and their respective decals. Edits higher in the
layer ordering are applied on top of lower decals (Figure 4).

Given this layer ordering, a procedural mesh model can be de-
scribed as a sequential list of editing nodes N applied to some base
surface. The inputs to N are a surface Sin and an editing opera-
tor E . Each node produces an output surface Sout = N (Sin,E).
Clearly this definition is recursive, allowing sequential operations
to be chained together. However, since E could be a geometric tex-
ture defined by another series of procedural edits, trees of nodes
can also be constructed. We refer to this tree of editing nodes as
a surface tree. An example is shown in Figure 2. The hierarchi-
cal definition of a 3D model is strongly reminiscent of procedural
implicit volume modeling frameworks [Wyvill et al. 1999].

3.2 Surface Transport

The surface tree defines a procedural 3D model by assembling a
complex surface from a series of simpler editing operations. How-
ever, the surface transport problem described in Figure 3 still exists.
Luckily, the decal framework provides a mechanism for transferring
editing operations between surfaces. Remember, each edit E is ap-
plied using a decal parameterization, and hence the support region
of E is entirely defined by the decal seed point and geodesic radius.
To transfer the decal parameterization between surfaces, the seed
point must simply be moved to the new surface. The tangent frame

Figure 4: Three surface deformations are layered one on top of
another (a), with seed point mappings shown as dotted lines. If the
bottom deformation is modified (b) or deleted (c), the seed point
lying on top of it is automatically transferred to the new surface.

is then aligned with the surface normal at the new seed point, and
the decal can be regenerated.

In [Schmidt et al. 2006], decal seed points were transferred to a
changing implicit surface using gradient walks. Similarly, we can
find the nearest point on the new surface. However, this approach
does not maintain relative position between edits, which make con-
trollable positioning of multiple edits very difficult. To maintain
relative position, the decal seed point is “anchored” as a 2D point
in the parameter space of a lower node, rather than an absolute 3D
point. To produce the 3D seed point required in the ExpMap algo-
rithm, the 2D seed point is mapped onto the surface using the an-
chor node parameterization. Likewise, if the anchor node is deleted,
the uv seed point is automatically mapped back onto the input sur-
face for that node, and possibly attached to another node in the
surface tree. (Figure 4). Using this approach, nodes lower in the
surface tree can be coherently manipulated (Figure 5).

Figure 5: Several geometric textures (Stanford bunnies) are layered
on top of a curve-following deformation. The bunnies are anchored
in the parameter space of this deformation, so they maintain relative
position as it is stretched.

4 Procedural Editing Operations

To demonstrate the benefits of hierarchical surface tree editing, we
have developed a prototype interactive modeling system. The in-
terface is sketch-based in nature, the user specifies the shape of
new geometry by drawing curves directly on the surface. These
concepts have been described in existing sketch-based modeling
works [Igarashi et al. 1999; Schmidt et al. 2005]. The interac-
tive tools used in the system are generally very simple, based on
standard geometric techniques such as displacement, extrusion, and
parametric curves [Foley et al. 1990]. The novelty is not in the im-
plementation of these algorithms, but in how they are applied to the
surface.

3



Online Submission ID: papers 0295

Existing geometric texturing systems have either avoided modify-
ing the original surface geometry [Porumbescu et al. 2005], or re-
placed it entirely by seamless tiling of the geometric texture ele-
ment [Elber 2005; Zhou et al. 2006]. In our interactive system only
a single geometric texture is being placed. To preserve manifold
properties, it’s geometry must be seamlessly stitched into the target
surface.

We use the local decal parameterization to robustly and efficiently
stitch geometric texture elements into the existing mesh. Geomet-
ric textures are attached via well-defined boundary loops, which
can be projected into the decal parameter space, as can the relevant
portion of the surface mesh. Once in this 2D space, the efficient
constrainted Delaunay triangulation code TRIANGLE [Shewchuk
1996] is used to insert the boundary loops and discard interior tri-
angles. This modified 2D mesh is projected back to the surface, and
the geometric texture element is inserted (Figure 9).

Note that this projection approach is unnecessary in some opera-
tions, such as for simple displacement mapping. However, we still
find it useful in that case, as it permits the displacement map to be
accurately meshed as a pre-process.

4.1 Generalized Surface Displacement

The standard formulations of displacement mapping and geometric
texture rely on the notion of normal offsets. A more general ap-
proach is to consider a uv-parameterized domain DS lying on some

surface S, where uv ∈ [0,1]2. Assume another uv-parameterized

domain DO ∈ [0,1]2 exists on some other surface. These two do-
mains have a mutual parameterization, meaning that there exists a
trivial bijective mapping between the parameterized regions of the
two surfaces (via the parameterizations).

A mutual parameterization also defines a trivial map from the

canonical 3D volume uvw ∈ [0,1]3 to the 3D space existing be-
tween the two surface domains. Given some coordinate (u,v,w),
two unique points p ∈ DS and q ∈ DO are defined by (u,v), and
w specifies a 3D point along the linear path p + w · (q − p). In
this way, the mutual parameterization between two surfaces can be
used to apply geometric texture. Traditional normal displacement
is simply a particular method of defining DO (Figure 6).

Figure 6: Geometric textures are applied by defining a volume de-
formation from a canonical unit cube to 3D world space (a). Linear
deformation paths can be defined by surface normals (b), a constant
vector (c), or another parameterized surface, such as a plane (d).

There is no requirement that the paths in world space be linear. In
Figure 7, a control curve defines a bundle of Bezier splines between
DS and DO . To simplify the mapping from the canonical geomet-
ric texture domain, each curve is parameterized by w ∈ [0,1]. The
result is essentially a dynamic volume deformation, which changes
to conform to DS as the underlying decal moves across the surface.

Figure 7: A geometric texture (a) applied to a surface using a
non-linear displacement volume (c) defined by a bundle of Bezier
curves. The new geometry is dynamically stitched into the existing
mesh (b, inset).

4.2 Topology Change

One limitation of geometric texture is that it is strictly additive
- while it can be used to append surface elements with non-zero
genus (Figure 8a), it cannot cut a hole in a sphere. However, when
combined with local parameterization, the geometric texture frame-
work can be adapted to support insertion of topological holes and
handles. To do so, DO and DS are both specified using separate de-
cals. Profile curves lying in these decals define a cylindrical “tube”
in canonical space, which is mapped to 3D space based on the mu-
tual parameterization of DO and DS , and stitched in to the existing
surface.

Like generalized displacement operations, these topological holes
and handles are simply additional nodes in the procedural surface
tree. Both ends of the new geometry can be interactively manipu-
lated by dragging the decals across the underlying surface. To sup-
port arbitrary profile curves, we (linearly) interpolate between the
distance fields of the two curves, and mesh this implicit surface in
canonical space. This produces holes and handles with sharp edges.
Deformations can also be applied to the canonical-space mesh to
create smooth transition regions, or other transition shapes. Note
that since these topological operations depend only on local para-
meterizations, they can be applied to non-manifold surfaces (Fig-
ure 8c).

Figure 8: Geometric texture elements can contain topological holes
(a), however they cannot create holes in the existing surface. Topo-
logical holes can be generated by cutting the manifold using multi-
ple decals and connecting the boundary loops (b). Handles between
non-manifold surfaces can also be created (c).

5 Procedural Mesh Data Structure

Conceptually, the procedural mesh model proposed in Section 3 is
straightforward to implement. Each mesh edit node takes a base

4



Online Submission ID: papers 0295

mesh as input, modifies it, and outputs a new mesh. Note that it
is not possible to pass a single vertex through multiple deforma-
tions, as is the case with volume deformations. Hence, each in-
termediary surface must be fully computed before the next can be
updated. However, it is infeasible to generate a new mesh at each
node. Memory constraints prevent the storage of a large number of
high-resolution meshes, and even at lower resolution, if an opera-
tion deep in the model stack is changed then the overhead of gen-
erating all the intermediate meshes becomes overwhelming. This
global approach fails to provide the real-time feedback that 3D de-
signers have come to expect.

Our solution is to leverage the local support of each mesh edit. The
decal parameterization limits the region of the mesh which can pos-
sible be affected by an edit. Hence, we define a Mask operator
which takes as arguments an input mesh S and a decal parameter-
ization P . Mask(S,P) produces a light-weight “surface” which
provides the same interface as S by forwarding requests directly to
S. However, when iterating over the triangles of Mask(S,P), those
which lie in the masked region are transparently skipped. The re-
sulting surface contains a hole whose inner boundary coincides with
the outer boundary of P . the interior triangles are not discarded,
but simply hidden by Mask. Since none of the data in S is copied
or modified, it can be instantly recovered by removing the mask.
Further, since the decal has local support, so does Mask, making it
efficient on large meshes.

To re-insert the portion of S modified by an editing operation, the
Weld operator is applied. This operator takes as input the surface
output by a mask operation, SM , and the modified decal surface
SP . Like Mask, the output of Weld(SM ,SP ) masquerades as a
surface, passing requests on to either SM or SP as necessary. Iter-
ating over the triangles of Weld(SM ,SP ) first outputs the triangles
triangles of SM , followed by the those of SP . Again, the Weld
operator does not copy or modify either of it’s input surfaces.

Additional care must be taken in the Weld operator to avoid intro-
ducing “cracks” along the common boundary vertices which exist
in both SM and SP . Weld transparently re-writes incoming and
outgoing boundary vertex indices, presenting the outward appear-
ance of a manifold mesh. To avoid any complications in this bound-
ary rewriting, all surface editing operators are required to preserve
the outer boundary loop of the decal mesh.

Given a surface and a decal, a procedural mesh deformation can
then be implemented as Weld(Mask(S,P),SP ). Since the output
of Weld presents the same interface as S, these operators can be
recursively applied, creating a procedural mesh data structure. Note
that Mask and Weld are easily implemented on point set surfaces.
In fact, the point set implementation of Weld is less complex, since
the explicit boundary re-writing is unnecessary.

Figure 9: To apply a surface edit, a local uv-parameterization is
used to segment a set of triangles (a). The Mask operator produces
a new mesh which hides these triangles (b). The masked region is
then copied and projected down into the uv space, where the edited
region is re-meshed and then projected back into 3D (c). Finally,
the Weld operator is applied to synthesize a manifold mesh (d).

Although Mask and Weld operate locally, edits may have large sup-
port regions, and the overhead of repeated applications will limit in-

teractivity as the node tree grows. To mitigate this, we have found it
useful to dynamically insert cache nodes into the mesh tree. These
cache nodes simply copy the abstract mesh produced by a proce-
dural operation into a single manifold mesh, which is significantly
more efficient to iterate over. Cache nodes are dynamically inserted
directly below any edit node that the user is interacting with, and
discarded when the interaction is complete. In addition, if the user
is manipulating a node deep in the tree, interactivity can be main-
tained by limiting the number of parent nodes which are recom-
puted during dynamic interaction, and reducing the resolution of
procedural editing operations.

Figure 10: A series of variations on an initial surface tree model
(top left) derived by manipulating the parameters of different nodes
in the tree.

6 Discussion

The primary goal of this work is to increase the power of surface
modeling tools available to designers, by allowing them to “go back
in time” and non-destructively modify any modeling decisions they
have made in the past. The first step in this direction was to develop
a surface representation which could support this style of interac-
tion. Hence, we have described the surface tree, a novel approach to
representing complex hierarchies of surface editing operations. By
combing traditional geometric modeling techniques with dynamic
surface parameterization, the surface tree is capable of represent-
ing a wide range of 3D models (Figure 1). To demonstrate the
capabilities of surface trees, we developed a prototype modeling
environment which allows the designer to efficiently composite a
series of surface manipulation. Each discrete edit is represented as
an independent node in our procedural mesh data structure, which
enables dynamic visualization of the surface tree as it is modified.
This easily allows a designer to explore different design variations
(Figure 10).

As with any prototype interactive tool, our system has a variety of

5



Online Submission ID: papers 0295

limitations. One key restriction is that the discrete exponential map
parameterization is known to produce significant foldovers when
parameterizing large regions of varying curvature [Schmidt et al.
2006]. While more robust and efficient techniques can likely be de-
veloped, parameterizations over large domains necessarily contain
distortion. This fundamentally limits the capabilities of a geomet-
ric texture approach. We are exploring the use of Laplacian surface
reconstruction [Sorkine et al. 2004] as a means for expanding the
range of deformations that can be applied. Note that the surface
tree concept is not dependent on geometric texture, and is easily
adaptable to other surface manipulation techniques.

Although we have not implemented it, our implementation frame-
work can trivially be applied to point set surfaces [Zwicker et al.
2002]. The discrete exponential map computes geodesic discs and
uv-parameterizations directly on point sets, and our procedural
mesh data structure (Section 5) is easily implemented for point sets.
If all editing operations are similarly procedural in nature, a sur-
face tree created in our mesh-based interface could even be “played
back” on a point set surface, or vice-versa. Similarly, the resolu-
tion of procedural operations can be dynamically varied, to auto-
matically construct output models at various levels of detail while
faithfully capturing salient model features.

Another aspect of surface trees yet to be explored is applications
in computer animation. Procedural models are trivial to animate,
and the ability to dynamically manipulate layered surface geometry
may be particularly beneficial in this domain.

References

ADOBE SYSTEMS INC., 2007. Adobe Illustrator.
www.adobe.com/illustrator.

AUTODESK INC., 2007. Maya. www.autodesk.com/maya.

BARR, A. H. 1984. Global and local deformations of solid primi-
tives. In Proceedings of SIGGRAPH 84, 21–30.

BIERMANN, H., MARTIN, I., BERNARDINI, F., AND ZORIN, D.
2002. Cut-and-paste editing of multiresolution surfaces. ACM
Trans. Graph. 21, 3, 312–321.

BOTSCH, M., PAULY, M., GROSS, M., AND KOBBELT, L. 2006.
Primo: Coupled prisms for intuitive surface modeling. In Euro-
graphics Symposium on Geometry Processing, 11–20.

COOK, R. L. 1984. Shade trees. In Proceedings of SIGGRAPH
84, 223–231.

EBERT, D., MUSGRAVE, K., PEACHEY, D., PERLIN, K., AND

WORLEY, S. 2002. Texturing and Modeling: A Procedural
Approach, 3rd ed. Morgan Kaufmann.

ELBER, G. 2005. Geometric texture modeling. IEEE Comput.
Graph. Appl. 25, 4, 66–76.

FOLEY, J. D., VAN DAM, A., FEINER, S. K., AND HUGHES, J. F.
1990. Computer graphics: principles and practice (2nd ed.).
Addison-Wesley.

HABLE, J., AND ROSSIGNAC, J. 2005. Blister: Gpu-based render-
ing of boolean combinations of free-form triangulated shapes.
ACM Trans. Graph. 24, 3, 1024–1031.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy:
A sketching interface for 3d freeform design. In Proceedings of
SIGGRAPH 99, 409–416.

LEWIS, T., AND JONES, M. W. 2004. A system for the non-linear
modelling of deformable procedural shapes. Journal of WSCG
12, 2, 253–260.

MUSETH, K., BREEN, D. E., WHITAKER, R. T., AND BARR,
A. H. 2002. Level set surface editing operators. In Proceedings
of SIGGRAPH ’02, 330–338.

PENG, J., KRISTJANSSON, D., AND ZORIN, D. 2004. Interac-
tive modeling of topologically complex geometric detail. ACM
Trans. on Graph. 23, 3, 635–643.

PIXOLOGIC INC., 2007. ZBrush. www.pixologic.com.

PORUMBESCU, S. D., BUDGE, B., FENG, L., AND JOY, K. I.
2005. Shell maps. ACM Trans. Graph. 24, 3, 626–633.

PRUSINKIEWICZ, P., AND LINDENMAYER, A. 1991. The Algo-
rithmic Beauty of Plants. Springer.

SCHMIDT, R., WYVILL, B., SOUSA, M. C., AND JORGE, J. A.
2005. Shapeshop: Sketch-based solid modeling with blobtrees.
In Eurographics Workshop on Sketch-Based Interfaces and Mod-
eling, 53–62.

SCHMIDT, R., GRIMM, C., AND WYVILL, B. 2006. Interactive
decal compositing with discrete exponential maps. ACM Trans-
actions on Graphics 25, 3, 605–613.

SEDERBERG, T. W., AND PARRY, S. R. 1986. Free-form defor-
mation of solid geometric models. In Computer Graphics (Pro-
ceedings of SIGGRAPH 86), vol. 20, 151–160.

SHEWCHUK, J. R. 1996. Triangle: Engineering a 2D Quality
Mesh Generator and Delaunay Triangulator. In Applied Compu-
tational Geometry: Towards Geometric Engineering, M. C. Lin
and D. Manocha, Eds., vol. 1148 of Lecture Notes in Computer
Science. Springer-Verlag, 203–222.

SINGH, K., AND FIUME, E. L. 1998. Wires: A geometric defor-
mation technique. In Proceedings of SIGGRAPH 98, 405–414.

SORKINE, O., COHEN-OR, D., LIPMAN, Y., ALEXA, M.,
RÖSSL, C., AND SEIDEL, H.-P. 2004. Laplacian surface edit-
ing. In Eurographics / ACM SIGGRAPH Symposium on Geom-
etry Processing, 175–184.

VON FUNCK, W., THEISEL, H., AND SEIDEL, H.-P. 2006. Vector
field based shape deformations. ACM Trans. Graph. 25, 3, 1118–
1125.

WELCH, W., AND WITKIN, A. 1992. Variational surface mod-
eling. In Computer Graphics (Proceedings of SIGGRAPH 92),
vol. 26, 157–166.

WYVILL, B., GUY, A., AND GALIN, E. 1999. Extending the
csg tree. warping, blending and boolean operations in an implicit
surface modeling system. Comp. Graph. Forum 18, 2, 149–158.

YU, Y., ZHOU, K., XU, D., SHI, X., BAO, H., GUO, B., AND

SHUM, H.-Y. 2004. Mesh editing with poisson-based gradient
field manipulation. ACM Trans. Graph. 23, 3, 644–651.

ZHOU, K., HUANG, X., WANG, X., TONG, Y., DESBRUN, M.,
GUO, B., AND SHUM, H.-Y. 2006. Mesh quilting for geometric
texture synthesis. ACM Trans. Graph. 25, 3, 690–697.

ZORIN, D., SCHRÖDER, P., AND SWELDENS, W. 1997. Interac-
tive multiresolution mesh editing. In Proceedings of SIGGRAPH
97, 259–268.

ZWICKER, M., PAULY, M., KNOLL, O., AND GROSS, M. 2002.
Pointshop 3d: An interactive system for point-based surface edit-
ing. ACM Trans. Graph. 21, 3, 322–329.

6




